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研究背景目标



万物互联，道法自然 4

研究对象：图



我们每天都在使用图，图无处不在 5

研究对象：图

路网图



我们每天都在使用图，图无处不在 6

研究对象：图

路网图
网络拓扑图



社交网络图

我们每天都在使用图，图无处不在 7

研究对象：图

路网图
网络拓扑图



社交网络图

我们每天都在使用图，图无处不在 8

研究对象：图

路网图
网络拓扑图

图谱



图计算系统

图数据

图查询系统是支撑下游图应用的重要基础设施 9

研究背景:图计算系统研究的重要性

图计算系统研究的重要性

城市路网图 知识图谱社交网络 交易图

支撑 支撑

管理 存储 处理

硬件查询优化 并行引擎编程接口

输入输入管理

应用场景

智慧城市 金融安全 电子商务 网络安全

工信部《“十四五”软件和信息技术服务业发展规划》

专栏一 关键基础软件补短板：突破全内存高速数据引擎、高可靠数据存储引擎、分
布式数据处理与任务调度架构、大规模并行图数据处理等技术。

任务调度

专栏二 关键共性技术：研究跨媒体统一表征、关联理解与知识挖掘、知识图谱构建
与学习、知识演化与推理、智能描述与生成等技术，开发跨媒体分析推理引擎与验
证系统。

国务院《新一代人工智能发展规划》

《Gartner Identifies Top 10 Data and Analytics Technology Trends》

Trend 8 Graph Relates Everything: Gartner predicts that by 2025, graph 
technologies will be used in 80% of data and analytics innovations, up from 
10% in 2021, facilitating rapid decision making across the organization.

生物信息



图计算系统在计算机领域的重要性日益凸显 10

研究背景：图数据查询系统的历史发展

1736年，欧拉通过解决“哥尼斯堡
七桥问题”， 

开创了图论这一全新数学分支 

2010年，Google 提
出基于点中心模型的
分布式图模型Pregel 
大规模图计算兴起 

2007年， 以Neo4j为代
表的商用图数据库兴起

2016年，UC Davis提出
第一个GPU图计算框架

2012年，CMU推出GraphChi 
开启单机外存图系统先河， 
PC也能处理大规模图数据

2020年，Alibaba 提出全展示分布式图系
统 GraphScope集成OLAP、OLTP、
GNN，实现多种图任务的统一架构

2018年，爱丁堡大学,  北航首次推出基
于图中心模型基的分布式图系统GRAPE

1960年，第一个图数据管理
系统IMS诞生于IBM
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研究现状

技术类型 代表方法 核心思想 优点 存在的问题

全内存图查询系统 Ligra[PPoPP’13],
Galios[SOSP’13]等

将整个图加载到内存，
加速随机访问

查询时延低，适合实时
分析

无法处理超出内存容量
的图

分布式图查询系统 GraphScope[VLDB’21],Pr
egel[SIGMOD’10],GRAPE
[SIGMOD’18]等

将大图分片存储 并行查
询，使用集群计算提升
查询能力

优越的并行性和扩展
性，计算效率高

计算负载不均衡，通信
开销大，运维成本高

外存图查询系统 GraphChi[OSDI’12], 
GridGraph[ATC’15]Mosai
c[EuroSys’17]等

使用磁盘 & SSD 存储图
数据，通过索引 & 预取
优化查询

可处理大规模图，适用
于低成本场景

I/O瓶颈，查询时延高

异构图查询系统 Gunrock[PPoPP’16],EGS
M[SIGMOD’23],G2Miner[
OSDI’22]等

利用 GPU / FPGA / 
NVM 加速计算 & 存储

并行能力&强适合高吞
吐查询 & 复杂分析

基于CPU的优化逻辑不
再适用，需要专门优化



本研究聚焦于单机图查询系统 12

本研究重点

现实需求 
✓中小企业对大规模图计算需求旺盛，但预算有限。
✓国企和事业单位处于安全隐私考虑在采用云解决方案时则更为审慎
✓对单机图系统的研究有助于分布式系统的研究，单机的研究能反哺分布式架构的研究

分布式图查询系统

价格

性能单机全内存图查询系统

单机外存异构图查询系统

专⽤图查询系统

本⽂研究范围

单机外存图查询系统
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单机大规模图数据查询系统挑战

图数据处理难

规模性

图数据的规模指数级增长
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单机大规模图数据查询系统挑战

图数据处理难

规模性

图数据的规模指数级增长

超级节点

超过  顶点 只有一个邻居 108

幂律性

用户 粉丝数

1.27亿

1000+



大规模、幂律分布与高计算复杂性 15

单机大规模图数据查询系统挑战

图数据处理难

一次6跳环路检测在519M顶点图上 
平均需要遍历超过20亿条路径

计算复杂

规模性

图数据的规模指数级增长

超级节点

超过  顶点 只有一个邻居 108

幂律性

用户 粉丝数

1.27亿

1000+



榨干单台机器的性能极限，使得单机也能处理大规模图数据 16

单机大规模图数据查询系统研究挑战与机遇

挑战：资源受限

性能维度 单机系统 分布式系统

最大并行度 CPU物理核心数（<128） 节点数 X 节点核心数（理论无上界）
内存容量上限 内存容量上限（受主板限制） 计算节点内存总和（理论无上界）

数据局部性 全内存访问延迟（<100ns） 跨节点访问（1us）

机遇一：新型硬件的快速普及

高并发算力

高吞吐量外存设备
CPU: 

16~32 cores

10GB/sGPU: 
2k~5k cores, 

12-16GB DDR 5

NVMe SSD: 
256GB~768GB

12~40GB/s

SSD: 
4TGB

7000MB/s



榨干单台机器的性能极限，使得单机也能处理大规模图数据 17

单机大规模图数据查询系统研究挑战与机遇

挑战：资源受限

性能维度 单机系统 分布式系统

最大并行度 CPU物理核心数（<128） 节点数 X 节点核心数（理论无上界）
内存容量上限 内存容量上限（受主板限制） 计算节点内存总和（理论无上界）

数据局部性 全内存访问延迟（<100ns） 跨节点访问（1us）

机遇二：专用图查询系统优化研究

药物发现 反金图系统
图数据清洗系统

8x
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单机大规模图数据查询系统关键技术研究

单机⼤规模图数据查询系统优化关键技术研究

单源最短路径 图遍历连通分量 图模拟PageRank 图模式匹配

通⽤图查询任务

图实体识别

专⽤图查询任务

⾦融⻛控导航 推荐系统 ⽹络安全 ⽣物信息学 社交⽹络分析

图查询应⽤场景

单机图查
询挑战

研究内容

创新点

应⽤场景

图查询

⾯向单机图查询的⾼效编
程模型与计算模式

研究内容⼀
（第三章）

单据图计算编程模型与计
算模式设计

挑战⼀

点中⼼图中⼼混合模型
两级并⾏计算模式

技术创新点

⾯向单机图查询的输⼊输
出优化与资源分配机制

研究内容⼆
（第四章）

单机图查询的输⼊输出性
能瓶颈

挑战⼆

流⽔线并⾏架构
基于学习模型的资源调度

基于状态机的⼦图状态管理 

技术创新点

⾯向单机图查询的
GPU加速技术

研究内容三
（第五章）

图查询负载在GPU异构架
构下的执⾏效率瓶颈

挑战三

并⾏滑动窗⼝任务划分
动态任务窃取策略

技术创新点

⾯向图实体识别的专⽤图
查询系统优化技术研究

研究内容四
（第六章）

复杂应⽤场景下的专⽤图
查询系统设计

挑战四

实体过滤专⽤优化
图模式匹配专⽤优化

多GPU协作

技术创新点

编程模型与计算模式优化 数据传输与资源分配优化 GPU加速器优化 专⽤图查询优化



主要研究内容
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主要研究工作一

单机⼤规模图数据查询系统优化关键技术研究

单源最短路径 图遍历连通分量 图模拟PageRank 图模式匹配

通⽤图查询任务

图实体识别

专⽤图查询任务

⾦融⻛控导航 推荐系统 ⽹络安全 ⽣物信息学 社交⽹络分析

图查询应⽤场景

单机图查
询挑战

研究内容

创新点

应⽤场景

图查询

⾯向单机图查询的⾼效编
程模型与计算模式

研究内容⼀
（第三章）

单据图计算编程模型与计
算模式设计

挑战⼀

点中⼼图中⼼混合模型
两级并⾏计算模式

技术创新点

⾯向单机图查询的输⼊输
出优化与资源分配机制

研究内容⼆
（第四章）

单机图查询的输⼊输出性
能瓶颈

挑战⼆

流⽔线并⾏架构
基于学习模型的资源调度

基于状态机的⼦图状态管理 

技术创新点

⾯向单机图查询的
GPU加速技术

研究内容三
（第五章）

图查询负载在GPU异构架
构下的执⾏效率瓶颈

挑战三

并⾏滑动窗⼝任务划分
动态任务窃取策略

技术创新点

⾯向图实体识别的专⽤图
查询系统优化技术研究

研究内容四
（第六章）

复杂应⽤场景下的专⽤图
查询系统设计

挑战四

实体过滤专⽤优化
图模式匹配专⽤优化

多GPU协作

技术创新点

编程模型与计算模式优化 数据传输与资源分配优化 GPU加速器优化 专⽤图查询优化
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挑战一：图计算并行模型单机环境适配难

图中心模型 点中心模型

✓图中心模型将全图细节暴露给用户，用户可以
实现更优的算法

✓基于数据划分，BSP的子图级同步并行
✓并行度 <= 子图数

✓点中心模型为用户暴露顶点及其邻居的细节
✓顶点级并行潜在并行度更高
✓并行度 <= 顶点数

Gather
(3) Apply

Machine 1 Machine 2
M

irror

Scatter

(1) Gather

(4) Updated 
Vertex Data

(5) Scatter

(2) Accumulator
(Partial Sum)

Ap
pl

y Gather

Scatter



I/O是外存系统的性能瓶颈 22

挑战一：图计算并行模型单机环境适配难

不同的并行模型在单机环境下，具有显著性能差异

并行模型 Friendster (18亿边，29GB，平均直径5.1) Web-sk（18亿边，32GB，平均直径13.7）

超步 外存读 并行度 超步 外存读 并行度

点中心模型 21 135GB 10 （取决于可用核数） 120 367GB 10 （取决于可用核数）
图中心模型 6 74GB 4（取决于子图数量） 9 82GB 4（取决于子图数量）

实验环境 
✓查询：弱连通分量查询
✓环境：16GB DDR4 内存、Intel Xeon W-2255 （10 核 20 线程）
✓数据集: web-sk(32GB), friendster:(29 GB)
发现 
✓当内存不足以容纳整个图G时，点中心模型引发更多的数据读取操作
✓当图的直径增大，点中心模型引发更多的数据传输开销



基于数据划分并行的图中心模型，并行度高将损害系统性能 23

挑战一：图计算并行模型单机环境适配难

不同的并行模型在单机环境下，具有显著性能差异

实验环境 
✓查询：弱连通分量查询
✓环境：64GB DDR4 内存、Intel Core i9 CPU （10 核 20 线程）
✓数据集: clueweb:(137GB GB)
发现 
✓采用图中心模型会引入图碎片化问题，从而削弱系统性能。

0

1400

2800

4 8 16

时间

分图数量



通过VC的子图内并行丰富GC的子图间并行 24

PIE+：图中心/点中心混合模型

✓点中心模型在单机环境下数据传输开销大
✓图中心模型在单机环境下易产生“碎片化”问题

问题

解决思路

✓混合模型：支持基于数据划分并行的图中心
模型，在PEval 和IncEval 插入支持操作级
并行的点中心模型EMap和VMap

✓两极并行模式：子图间并行 + 子图内并行

✓特点：正确性、易用性、高性能

并行执行点中心程序

点中心程序

图中心程序
PEval

点中心程序

图中心程序
IncEval

并行执行点中心程序



25

实验分析

实验结果

实验设计

数据集 
✓环境：16GB DDR4 内存、Intel Xeon W-2255 （10 核 20 线程）
✓数据集： Friendster (|V|=65M, |E| = 1.9B, 31GB)， web-sk（|V|=50, |E|=1.8B, 31GB）
✓查询：WCC



26

主要研究工作二

单机⼤规模图数据查询系统优化关键技术研究

单源最短路径 图遍历连通分量 图模拟PageRank 图模式匹配

通⽤图查询任务

图实体识别

专⽤图查询任务

⾦融⻛控导航 推荐系统 ⽹络安全 ⽣物信息学 社交⽹络分析

图查询应⽤场景

单机图查
询挑战

研究内容

创新点

应⽤场景

图查询

⾯向单机图查询的⾼效编
程模型与计算模式

研究内容⼀
（第三章）

单据图计算编程模型与计
算模式设计

挑战⼀

点中⼼图中⼼混合模型
两级并⾏计算模式

技术创新点

⾯向单机图查询的输⼊输
出优化与资源分配机制

研究内容⼆
（第四章）

单机图查询的输⼊输出性
能瓶颈

挑战⼆

流⽔线并⾏架构
基于学习模型的资源调度

基于状态机的⼦图状态管理 

技术创新点

⾯向单机图查询的
GPU加速技术

研究内容三
（第五章）

图查询负载在GPU异构架
构下的执⾏效率瓶颈

挑战三

并⾏滑动窗⼝任务划分
动态任务窃取策略

技术创新点

⾯向图实体识别的专⽤图
查询系统优化技术研究

研究内容四
（第六章）

复杂应⽤场景下的专⽤图
查询系统设计

挑战四

实体过滤专⽤优化
图模式匹配专⽤优化

多GPU协作

技术创新点

编程模型与计算模式优化 数据传输与资源分配优化 GPU加速器优化 专⽤图查询优化



I/O是外存系统的性能瓶颈，如何提升资源利用率 27

挑战：I/O瓶颈导致的资源利用率低下

已有图查询系统 
✓当图数据规模显著超过内存容量时，I/O操作已成为现有图查询系统的主要性能瓶颈。

实验示例 
✓查询：弱连通分量查询
✓环境：64GB DDR4 内存、Intel Core i9 （10 核 20 线程）、1TB SATA SSD（顺序读取 560MB/s）
✓数据集: clueweb(134GB)

GridGraph 资源利用率分析： 黑色 CPU利用率、粉红色I/O带宽利用率
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MiniGraph: 单机外存图查询系统加速引擎

✓外存图查询系统资源利用率低

问题

✓流水线并行架构
✓基于学习模型的资源调度
✓子图状态管理

解决思路

资源利⽤率低
计算等待I/O

核⼼解决思路：
异步并⾏与智能调度

⼦图状态管理流⽔线并⾏架构

三⼤关键技术

基于学习模型的资源调度

产⽣任务流 提供状态信息

⼦图数据

状态切换

实现计算与I/O重
叠、资源利⽤率提升
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贡献点一： 异步流水线架构

异步流⽔线架构 
✓一种通过重叠 I/O 和 CPU 操作以“抵消”过高 I/O 成本的流水线架构
✓实现数据加载、图计算、资源释放与调度的解耦

异步流水线架构

负责子图加载 负责资源释放

执行PEval 或IncEval
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贡献点二： 基于学习模型的资源调度

调度决策问题的⽬标函数

 
argmin

S
max
i→[0,n)

{ti + CA(Fi, pi)}

约束条件 
✓消耗的内存不能超过系统内存
✓总线程数不能超过系统线程数
✓只有当子图被加载进内存才能开始计算

问题定义
问题提出 
✓何时加载并处理子图？
✓如何分配资源以实现两级并行度的最大化？

调度决策问题是NP-完全的
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贡献点二： 基于学习模型的资源调度

启发式解决办法

1. 从⽇志数据中训练模型评估执⾏代价

2. 试探性资源分配策略 
✓初始状态根据子图的特征（大小，边缘顶点数
量分配）

3. 根据学习模型动态调整 
✓根据学习模型，优先加载计算成本最高且满足
约束条件的子图

调度决策问题的⽬标函数

 
argmin

S
max
i→[0,n)

{ti + CA(Fi, pi)}

约束条件 
✓消耗的内存不能超过系统内存
✓总线程数不能超过系统线程数
✓只有当子图被加载进内存才能开始计算

 
CA(Fi, pi) =

∑

v→V (Fi)

[hseq(x̂i(v)) +
hpara(x̂i(v))

min{pi, →di↑}
]

问题定义
问题提出 
✓何时加载并处理子图？
✓如何分配资源以实现两级并行度的最大化？

调度决策问题是NP-完全的



32

贡献点三： 子图状态管理

问题提出 
✓如何有效削减冗余I/O操作，并优化系统内部子图的协同管理机制
⼦图状态管理 
✓采用轻量级状态机架构，持续追踪各子图的核心计算进度
✓基于不动点检测机制动态判断系统停止条件
✓通过状态转换过程中的决策，自动跳过非必要的计算与I/O操作

子图状态转换图
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实验设计

数据集 基线
单机系统 
✓ GridGraph[ATC’15],GraphChi[OSDI’12],

XStream[SIGOPS’13]
分布式系统 
✓ GraphScope[VLDB’21],Gluon[PLDI’18]

✓ Ubuntu Server 20.04 LTS
✓ Intel Core i9-7900X CPU @3.30GHz 
✓ 13.75MB LLC 
✓ 10 cores (20 hyper threads)
✓ 64GB of DDR4-2666 memory
✓ 1TB WD blue SATA SSD, whose read 

throughput is 560MB/s.

测试环境 图查询
✓ WCC
✓ PageRank
✓ SSSP
✓ BFS
✓ Random Walk
✓ Simulation
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实验结果

Benchmark

结果概览 
✓ MiniGraph 比基线系统（ GridGraph, GraphChi and XStream）快最多 4.6×, 9.5× 和 28.9× 
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实验结果：运行时统计与资源使用情况对比

运⾏时统计信息 CPU/IO资源利⽤率分析

发现 
✓ MiniGraph 在执行 SSSP 和 WCC 任务时所需的超级步数量不到 GridGraph 的 29%，磁盘读取流量也不
到其 53.3%。

✓相比表现最优的基线系统 GridGraph，MiniGraph 的 CPU 利用率最高提升了 41.4%。
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实验结果：对比分布式系统

MiniGraph VS distributed systems

发现 
✓在子图模拟任务中，MiniGraph 的表现优于由12台机器组成的分布式图分析系统 Gluon，同时将多机系统
的金钱成本降低了3.0至13.9倍。
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主要研究工作三

单机⼤规模图数据查询系统优化关键技术研究

单源最短路径 图遍历连通分量 图模拟PageRank 图模式匹配

通⽤图查询任务

图实体识别

专⽤图查询任务

⾦融⻛控导航 推荐系统 ⽹络安全 ⽣物信息学 社交⽹络分析

图查询应⽤场景

单机图查
询挑战

研究内容

创新点

应⽤场景

图查询

⾯向单机图查询的⾼效编
程模型与计算模式

研究内容⼀
（第三章）

单据图计算编程模型与计
算模式设计

挑战⼀

点中⼼图中⼼混合模型
两级并⾏计算模式

技术创新点

⾯向单机图查询的输⼊输
出优化与资源分配机制

研究内容⼆
（第四章）

单机图查询的输⼊输出性
能瓶颈

挑战⼆

流⽔线并⾏架构
基于学习模型的资源调度

基于状态机的⼦图状态管理 

技术创新点

⾯向单机图查询的
GPU加速技术

研究内容三
（第五章）

图查询负载在GPU异构架
构下的执⾏效率瓶颈

挑战三

并⾏滑动窗⼝任务划分
动态任务窃取策略

技术创新点

⾯向图实体识别的专⽤图
查询系统优化技术研究

研究内容四
（第六章）

复杂应⽤场景下的专⽤图
查询系统设计

挑战四

实体过滤专⽤优化
图模式匹配专⽤优化

多GPU协作

技术创新点

编程模型与计算模式优化 数据传输与资源分配优化 GPU加速器优化 专⽤图查询优化
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挑战：图计算难以高效利用GPU

GPU的⾼效计算与图数据的倾斜性之间的⽭盾 

挑战 
✓图数据的顶点度的高度倾斜
✓ GPU线程束负载失衡引发高同步开销

(a) Data graph
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(c) Threads distribution on CSR
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(b) Threads distribution on Edgelist
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Threads

T1 T2 T3 T4 T5 T6 T7 T8 T9

…

GPU SIMT 架构执行流程示例
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挑战：图计算难以高效利用GPU

GPU的⾼效计算与图数据的倾斜性之间的⽭盾 

挑战 
✓图数据的顶点度的高度倾斜
✓ GPU线程束负载失衡引发高同步开销

(a) Data graph
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2 4 3 5 5 6 3 5 6 8 6 2 7
(c) Threads distribution on CSR
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(b) Threads distribution on Edgelist

Dst
Src

Threads

T1 T2 T3 T4 T5 T6 T7 T8 T9

…

图的幂律分布

计算负载不均衡
锁步执⾏同⼀指令线程束 Warp

GPU SIMT架构特点

顶点上的计算任务被
分配给不同线程 线程内执⾏路径分化

产⽣同步开销

GPU 利⽤率下降
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贡献点一： 基于滑动窗口的静态任务分配策略

TB 1 TB 2

Dst

0

Interval 1

TB 3 TB 1 TB 2 TB 3 TB 1 TB 2 TB 3

Sliding window 1 Sliding window 2 Sliding window 3

|V|-1

Interval 2 Interval 3 Interval 5Interval 4 Interval 6 Interval 8Interval 7 Interval 9

基于滑动窗⼝的静态任务分配策略 
✓对Src中顶点，按顶点度降序排序

✓将Src划分为  个区间（Interval），并为GPU中的每个线程块（TB）按序分配一个区间
✓线程块（TB）处理完当前区间，移动至滑动窗口的下一个对应区间

|V |
nt
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贡献点二： 基于共享内存的动态任务窃取

基于共享内存的动态任务窃取策略 
✓基于滑动窗口的静态任务划分不能保证负载均衡，由于每个区间的计算量可能不一样
✓区间间任务窃取
✓区间内任务窃取

尽管每个TB1-TB3被分配了同样数量的区间，但负载依然不均衡

区间间任务窃取

区间内任务窃取

并行滑动窗口分配结果

 enda = endb

 starta = startb +
startb + endb

2
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实验设计

数据集 基线
SOTA 
✓ CGGraph[VLDB’22]
✓ Subway[EuroSys’20]

✓ Ubuntu Server 20.04 LTS
✓ Intel Core i9-7900X CPU @3.30GHz 
✓ 13.75MB LLC 
✓ 10 cores (20 hyper threads)
✓ 64GB of DDR4-2666 memory
✓ Tesla V100 GPU x 4

测试环境 图查询
✓ WCC
✓ PageRank
✓ SSSP
✓ BFS
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实验结果

Benchmark

结果概览 
✓ GraphRipple 比基线系统（ CGGraph, Subway）快最多 15×，14.5x
✓验证了动态任务窃取以及滑动窗口的有效性

livejournal twitter
friendster web-sk

1.0
1.2

1.5

S
lo

w
do

w
n

(X
)

noStealing
noPSW

livejournal twitter
friendster web-sk

1.0
1.2

1.5
S

lo
w

do
w

n
(X

)

noStealing
noPSWm

64 128 256 512 1024
Interval Size

10

20

30

Ti
m

e
(s

)

noHO
GraphRipple

64 128 256 512 1024
Interval Size

10

20

30

Ti
m

e
(s

)

noHO
GraphRipple



44

主要研究工作四

单机⼤规模图数据查询系统优化关键技术研究

单源最短路径 图遍历连通分量 图模拟PageRank 图模式匹配

通⽤图查询任务

图实体识别

专⽤图查询任务

⾦融⻛控导航 推荐系统 ⽹络安全 ⽣物信息学 社交⽹络分析

图查询应⽤场景

单机图查
询挑战

研究内容

创新点

应⽤场景

图查询

⾯向单机图查询的⾼效编
程模型与计算模式

研究内容⼀
（第三章）

单据图计算编程模型与计
算模式设计

挑战⼀

点中⼼图中⼼混合模型
两级并⾏计算模式

技术创新点

⾯向单机图查询的输⼊输
出优化与资源分配机制

研究内容⼆
（第四章）

单机图查询的输⼊输出性
能瓶颈

挑战⼆

流⽔线并⾏架构
基于学习模型的资源调度

基于状态机的⼦图状态管理 

技术创新点

⾯向单机图查询的
GPU加速技术

研究内容三
（第五章）

图查询负载在GPU异构架
构下的执⾏效率瓶颈

挑战三

并⾏滑动窗⼝任务划分
动态任务窃取策略

技术创新点

⾯向图实体识别的专⽤图
查询系统优化技术研究

研究内容四
（第六章）

复杂应⽤场景下的专⽤图
查询系统设计

挑战四

实体过滤专⽤优化
图模式匹配专⽤优化

多GPU协作

技术创新点

编程模型与计算模式优化 数据传输与资源分配优化 GPU加速器优化 专⽤图查询优化



本文重点关注图实体识别任务的效率问题 45

图数据实体识别专用图查询系统关键技术研究

“大数据分析的头号问题”（Veracity, 真实性）

语义冲突与重复 
✓真实性与可靠性方面的挑战  

过时数据 
✓ 50%的存档记录在两年内变得过时
实体识别：发现数据中的实体关系 
✓高效实体识别：数据清洗的核心驱动力

关键挑战之⼀：性能 

好不好 快不快
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图数据实体识别专用图查询系统关键技术研究

英国:8100万个国家保险号码，而背后
对应符合条件的真实公民只有6000万

“大数据分析的头号问题”（Veracity, 真实性）

语义冲突与重复 
✓真实性与可靠性方面的挑战  

过时数据 
✓ 50%的存档记录在两年内变得过时
实体识别：发现数据中的实体关系 
✓高效实体识别：数据清洗的核心驱动力

关键挑战之⼀：性能 医疗机构中约有8%-12%的患者记录是重复的 （来源：AHIMA, 
American Health Information Management Association）

 一个数据去重项目通常需要3~6个月才能完成（来源：Thomson Reuters） 好不好 快不快

USA：数百万超过130岁的老
人，其中一位甚至已达到360
岁，他们都在领取社保
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挑战：专用图查询系统优化难

图数据实体识别

输⼊： 
实体识别规则、数据图

输出： 
属于同一真实世界实体的顶点对
集合 
{va, vb|(va, vb) are the same real word entity}

目标图

图模式

   属于同一实体u1 u2

 Q[x0, y0](X → p0)

图实体识别规则

匹配依赖

 t.venue = s.venue → t.category = s.category → t.year = s.year ↑ s.id = t.id

 t.venue = s.venue → t.name = s.name → t.author = s.author ↑ s.id = t.id
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挑战：专用图查询系统优化难

✓图实体识别包含多个关联的阶段。每个阶段具有不同的优化目标、输入输出
✓数据异构性：包含拓扑结构，文本等异构数据

规则解析 图模式匹配 实体过滤 实体匹配

图实体识别规则 数据图 实体过滤规则

目标

针对图实体识别中各个阶段优化
性能

图数据实体识别流程

存在问题
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图模式匹配

图模式匹配： 
✓图模式匹配是指在目标图中寻找与给定模式图结构一致的子图的过程

图模式匹配示例



本文方法在过滤能力与过滤代价的比值上表现最优 50

图模式匹配阶段挑战

评估Twitter上的剪枝能⼒与剪枝成本    
✓查询图：Q (|V|=4, |E|=3)
✓目标图：Twitter (|V|=1334392, |E|=46180342)
✓过滤方法：Label and degree filter (LDF, [SIGMOD’20]), Steady (DPIso[SIGMOD’19]), Neighbor-label 

(NLC, EGSM[SIGMOD’23]), Wedge (EGSM[SIGMOD’23])
✓过滤能力：Steady > Wedge > NLC > LDF > Label-only
✓过滤代价：Pruning cost: Label-only > LDF > NLC > Wedge > Steady

过滤方法对比：时间 过滤方法对比：解空间大小 过滤方法对比：GPU效率



仅依赖最小值容易导致假阴性结果 51

贡献点一：基于最小独立置换的过滤策略

观察：过滤规则

 ω1 : {L(u→)|u→ → N(u)} ⊋ {L(v→)|v→ → N(v)} ↑ u ↓= v

 其中 , ,  表示  的邻居的集合,  表示顶点  的标签u → P v → G N(v) v L(v) v

基于最小独立置换的过滤方法

  Pr(min{ω(A)} > min{ω(B)}) > 0 → B ⊋ A

 ,  得 A = {L(v→)|v→ → N(v)} B = {L(v→)|v→ → N(u)} u →= v



采用最小的  个值，有助于减少假阴性结果的发生k 52

贡献点一：基于最小独立置换的过滤策略

基于 -最小独立置换的过滤方法k

 ,  得 A = {L(v→)|v→ → N(v)} B = {L(u→)|N(u)} u →= v

 Pr(min{mink{ω(B)}\mink{ω(A)} < min{mink{ω(A)}\mink{ω(B)}}) > 0 → B ⊋ A

      Pr(max{mink{ω(A)}\k{ω(B)}} > max{mink{ω(B)}\mink{ω(A)}) > 0 → B ⊋ A



本文方法在过滤能力与过滤代价的比值上表现最优 53

图模式匹配阶段实验结果

评估Twitter上的剪枝能⼒与剪枝成本    
✓查询图：Q (|V|=4, |E|=3)
✓目标图：Twitter (|V|=1334392, |E|=46180342)
✓过滤方法：Label and degree filter (LDF, [SIGMOD’20]), Steady (DPIso[SIGMOD’19]), Neighbor-label 

(NLC, EGSM[SIGMOD’23]), Wedge (EGSM[SIGMOD’23])
✓过滤能力：Steady > Ours > Wedge > NLC > LDF > Label-only
✓过滤代价：Pruning cost: Label-only > LDF > Ours > NLC > Wedge > Steady

过滤方法对比：时间 过滤方法对比：解空间大小 过滤方法对比：GPU效率
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实体过滤阶段挑战

实验评估 

Blocking
Brute-force approach

Filtering
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tit

ie
s

Entities

Duplicate pairs

Blocking Filtering Matching

Scope of this paper

Entities

Duplicate pairs

Broadly BLOCKING

图模式匹配阶段之后
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实体过滤阶段挑战

实验评估 
✓目标图：DBLP (|V|=0.5M)
✓过滤方法：DeepBlocker[VLDB’21], 基于规则的简单实现的原型系统

基于规则的方法vs 基于学习的方法：空间开销 基于规则的方法vs 基于学习的方法：效率
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如何基于上述特性设计更高效的执行计划 56

贡献点二： 面向基于规则的实体过滤的执行计划优化

HyperBlocker架构

动机 
✓谓词排序 ： “描述（description）”字段提供更高的有效性和选择性，而  “颜色（color）”字段的评估
成本较低。那么，应该优先评估哪一个？

✓基于规则的实体过滤是以析取范式（DNF）形式组织的，即  OR 
✓实体过滤规则可能包含共同的谓词，因此可以复用计算结果

ω1 ω2

✓
✓
ω1 : t.title → s.title ↑ t.author → s.author ↑ t.year = s.year ↓ t.id = s.id
ω2 : t.title → s.title ↑ t.author = s.author ↑ t.venue → s.venue ↓ t.id = s.id

共同谓词 计算效率高，但辨识度低高辨识度，但计算代价高昂
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贡献点二： 面向基于规则的实体过滤的执行计划优化

输⼊：规则 
✓
✓
✓
输出：执⾏计划 
✓步骤 1：对谓词和规则进行排序：使用局部敏感哈希量化辨识度； 使用浅层模型和日志估算评估成本

ω1 : t.color = s.color→t.price = s.price→t.sname = s.sname→t.pname ↑ED s.pname ↓ t.eid = s.eid
ω2 : t.sname = s.sname → t.description ↑JD s.description ↓ t.eid = s.eid
ω3 : t.saddress →ED s.saddress↑t.description →JD s.description ↓ t.eid = s.eid

量化在数据  上满足谓词  的可能性D p

Historical logs

Tuple-pairs: 
<latexit sha1_base64="nI/07mIXnHZfnpHSbRjwEnFQtV0=">AAAB/XicbVA9SwNBEN3zM8av+FXZLCZCBAl3gtEyYGOpYIyQhGNvM4lr9vbO3TkhBrGz8gdYamGhiK3/w85/4+aj0OiDgcd7M8zMC2IpDLrulzM2PjE5NZ2aSc/OzS8sZpaWT02UaA5lHslInwXMgBQKyihQwlmsgYWBhErQPuj5lSvQRkTqBDsx1EPWUqIpOEMr+ZnVXB59sU3Rv9jaFjUFl/Qi52eybsHtg/4l3pBkS8tPdw+7a/dHfuaz1oh4EoJCLpkxVc+Nsd5lGgWXcJOuJQZixtusBVVLFQvB1Lv962/oplUatBlpWwppX/050WWhMZ0wsJ0hw3Mz6vXE/7xqgs39eleoOEFQfLComUiKEe1FQRtCA0fZsYRxLeytlJ8zzTjawNI2BG/05b/kdKfgFQvFYy9bcskAKbJONkieeGSPlMghOSJlwsk1eSQv5NW5dZ6dN+d90DrmDGdWyC84H9/I8ZZt</latexit>

(ti, tj), i →= j
<latexit sha1_base64="nI/07mIXnHZfnpHSbRjwEnFQtV0=">AAAB/XicbVA9SwNBEN3zM8av+FXZLCZCBAl3gtEyYGOpYIyQhGNvM4lr9vbO3TkhBrGz8gdYamGhiK3/w85/4+aj0OiDgcd7M8zMC2IpDLrulzM2PjE5NZ2aSc/OzS8sZpaWT02UaA5lHslInwXMgBQKyihQwlmsgYWBhErQPuj5lSvQRkTqBDsx1EPWUqIpOEMr+ZnVXB59sU3Rv9jaFjUFl/Qi52eybsHtg/4l3pBkS8tPdw+7a/dHfuaz1oh4EoJCLpkxVc+Nsd5lGgWXcJOuJQZixtusBVVLFQvB1Lv962/oplUatBlpWwppX/050WWhMZ0wsJ0hw3Mz6vXE/7xqgs39eleoOEFQfLComUiKEe1FQRtCA0fZsYRxLeytlJ8zzTjawNI2BG/05b/kdKfgFQvFYy9bcskAKbJONkieeGSPlMghOSJlwsk1eSQv5NW5dZ6dN+d90DrmDGdWyC84H9/I8ZZt</latexit>

(ti, tj), i →= j

Attribute Type of 
<latexit sha1_base64="ABxq++hr2tvFt9kWCkArDrCLshk=">AAAB7HicbZC7SgNBFIbPGi8x3qJiZbOYCFZh1yJaBmwsI7hJIFnC7ORsMmR2dpmZFcKSZ7CxUMTW9/AVLAQrH0Unl0ITfxj4+P9zmHNOkHCmtON8Wiu51bX1jfxmYWt7Z3evuH/QUHEqKXo05rFsBUQhZwI9zTTHViKRRAHHZjC8muTNO5SKxeJWjxL0I9IXLGSUaGN5Zd1l5W6x5FScqexlcOdQquU+vt+OvrDeLb53ejFNIxSacqJU23US7WdEakY5jgudVGFC6JD0sW1QkAiVn02HHdunxunZYSzNE9qeur87MhIpNYoCUxkRPVCL2cT8L2unOrz0MyaSVKOgs4/ClNs6tieb2z0mkWo+MkCoZGZWmw6IJFSb+xTMEdzFlZehcV5xq5XqjVuqOTBTHo7hBM7AhQuowTXUwQMKDO7hEZ4sYT1Yz9bLrHTFmvccwh9Zrz+0qpJY</latexit>

ti
<latexit sha1_base64="ABxq++hr2tvFt9kWCkArDrCLshk=">AAAB7HicbZC7SgNBFIbPGi8x3qJiZbOYCFZh1yJaBmwsI7hJIFnC7ORsMmR2dpmZFcKSZ7CxUMTW9/AVLAQrH0Unl0ITfxj4+P9zmHNOkHCmtON8Wiu51bX1jfxmYWt7Z3evuH/QUHEqKXo05rFsBUQhZwI9zTTHViKRRAHHZjC8muTNO5SKxeJWjxL0I9IXLGSUaGN5Zd1l5W6x5FScqexlcOdQquU+vt+OvrDeLb53ejFNIxSacqJU23US7WdEakY5jgudVGFC6JD0sW1QkAiVn02HHdunxunZYSzNE9qeur87MhIpNYoCUxkRPVCL2cT8L2unOrz0MyaSVKOgs4/ClNs6tieb2z0mkWo+MkCoZGZWmw6IJFSb+xTMEdzFlZehcV5xq5XqjVuqOTBTHo7hBM7AhQuowTXUwQMKDO7hEZ4sYT1Yz9bLrHTFmvccwh9Zrz+0qpJY</latexit>

ti and <latexit sha1_base64="2ybVBRLRh8YqTjnh36u+EViPHoQ=">AAAB7HicbZC7SwNBEMbn4ivGV4xY2RwmglW4E4yWARvLCOYByRH2NnvJmr29Y3dOCEdaK8HGIiIWNv5Bdv43bh6FRj9Y+PF9M+zM+LHgGh3ny8qsrK6tb2Q3c1vbO7t7+f1CQ0eJoqxOIxGplk80E1yyOnIUrBUrRkJfsKY/vJrmzXumNI/kLY5i5oWkL3nAKUFj1UvYvSt180Wn7Mxk/wV3AcVq4f1hcn74WOvmPzu9iCYhk0gF0brtOjF6KVHIqWDjXCfRLCZ0SPqsbVCSkGkvnQ07tk+M07ODSJkn0Z65PztSEmo9Cn1TGRIc6OVsav6XtRMMLr2UyzhBJun8oyARNkb2dHO7xxWjKEYGCFXczGrTAVGEorlPzhzBXV75LzTOym6lXLlxi1UH5srCERzDKbhwAVW4hhrUgQKHJ5jAiyWtZ+vVepuXZqxFzwH8kvXxDfmSkQ4=</latexit>

tj
<latexit sha1_base64="2ybVBRLRh8YqTjnh36u+EViPHoQ=">AAAB7HicbZC7SwNBEMbn4ivGV4xY2RwmglW4E4yWARvLCOYByRH2NnvJmr29Y3dOCEdaK8HGIiIWNv5Bdv43bh6FRj9Y+PF9M+zM+LHgGh3ny8qsrK6tb2Q3c1vbO7t7+f1CQ0eJoqxOIxGplk80E1yyOnIUrBUrRkJfsKY/vJrmzXumNI/kLY5i5oWkL3nAKUFj1UvYvSt180Wn7Mxk/wV3AcVq4f1hcn74WOvmPzu9iCYhk0gF0brtOjF6KVHIqWDjXCfRLCZ0SPqsbVCSkGkvnQ07tk+M07ODSJkn0Z65PztSEmo9Cn1TGRIc6OVsav6XtRMMLr2UyzhBJun8oyARNkb2dHO7xxWjKEYGCFXczGrTAVGEorlPzhzBXV75LzTOym6lXLlxi1UH5srCERzDKbhwAVW4hhrUgQKHJ5jAiyWtZ+vVepuXZqxFzwH8kvXxDfmSkQ4=</latexit>

tj

Length

Runtime

Embedding

Estimated cost of <latexit sha1_base64="yEZKdTAqA8FCY9tdeMC5bEsI2u0=">AAAB6nicbZC7TsMwFIZPyq2UWwobLBYtElOVMATGSiyMRdCL1EaV4zqtVceJbAepivoIXRhAiJUH4DVY2XgQdtzLAC2/ZOnT/58jn3OChDOlHefLyq2tb2xu5bcLO7t7+wd28bCh4lQSWicxj2UrwIpyJmhdM81pK5EURwGnzWB4Pc2bD1QqFot7PUqoH+G+YCEjWBvrrpyUu3bJqTgzoVVwF1CqFif29/HHe61rf3Z6MUkjKjThWKm26yTaz7DUjHA6LnRSRRNMhrhP2wYFjqjys9moY3RmnB4KY2me0Gjm/u7IcKTUKApMZYT1QC1nU/O/rJ3q8MrPmEhSTQWZfxSmHOkYTfdGPSYp0XxkABPJzKyIDLDERJvrFMwR3OWVV6FxUXG9infrlqoezJWHEziFc3DhEqpwAzWoA4E+TOAJni1uPVov1uu8NGcteo7gj6y3HzZMkMI=</latexit>p<latexit sha1_base64="yEZKdTAqA8FCY9tdeMC5bEsI2u0=">AAAB6nicbZC7TsMwFIZPyq2UWwobLBYtElOVMATGSiyMRdCL1EaV4zqtVceJbAepivoIXRhAiJUH4DVY2XgQdtzLAC2/ZOnT/58jn3OChDOlHefLyq2tb2xu5bcLO7t7+wd28bCh4lQSWicxj2UrwIpyJmhdM81pK5EURwGnzWB4Pc2bD1QqFot7PUqoH+G+YCEjWBvrrpyUu3bJqTgzoVVwF1CqFif29/HHe61rf3Z6MUkjKjThWKm26yTaz7DUjHA6LnRSRRNMhrhP2wYFjqjys9moY3RmnB4KY2me0Gjm/u7IcKTUKApMZYT1QC1nU/O/rJ3q8MrPmEhSTQWZfxSmHOkYTfdGPSYp0XxkABPJzKyIDLDERJvrFMwR3OWVV6FxUXG9infrlqoezJWHEziFc3DhEqpwAzWoA4E+TOAJni1uPVov1uu8NGcteo7gj6y3HzZMkMI=</latexit>p on attribute <latexit sha1_base64="/htoxPBChh2xY7rBFLsAPDUBotA=">AAAB6nicbZDLSgMxFIbPeK31VnXpJtgKdVNmXFR3Fty4rGgv0A4lk2ba0EwyJBmhDH0EEVwo4tbHcOUjuPNB3JteFtr6Q+Dj/88h55wg5kwb1/1ylpZXVtfWMxvZza3tnd3c3n5dy0QRWiOSS9UMsKacCVozzHDajBXFUcBpIxhcjvPGHVWaSXFrhjH1I9wTLGQEG2vdFHChk8u7JXcitAjeDPIX78Xvj4f2SbWT+2x3JUkiKgzhWOuW58bGT7EyjHA6yrYTTWNMBrhHWxYFjqj208moI3RsnS4KpbJPGDRxf3ekONJ6GAW2MsKmr+ezsflf1kpMeO6nTMSJoYJMPwoTjoxE471RlylKDB9awEQxOysifawwMfY6WXsEb37lRaiflrxyqXzt5StlmCoDh3AERfDgDCpwBVWoAYEe3MMTPDvceXRenNdp6ZIz6zmAP3LefgDE05Er</latexit>a<latexit sha1_base64="/htoxPBChh2xY7rBFLsAPDUBotA=">AAAB6nicbZDLSgMxFIbPeK31VnXpJtgKdVNmXFR3Fty4rGgv0A4lk2ba0EwyJBmhDH0EEVwo4tbHcOUjuPNB3JteFtr6Q+Dj/88h55wg5kwb1/1ylpZXVtfWMxvZza3tnd3c3n5dy0QRWiOSS9UMsKacCVozzHDajBXFUcBpIxhcjvPGHVWaSXFrhjH1I9wTLGQEG2vdFHChk8u7JXcitAjeDPIX78Xvj4f2SbWT+2x3JUkiKgzhWOuW58bGT7EyjHA6yrYTTWNMBrhHWxYFjqj208moI3RsnS4KpbJPGDRxf3ekONJ6GAW2MsKmr+ezsflf1kpMeO6nTMSJoYJMPwoTjoxE471RlylKDB9awEQxOysifawwMfY6WXsEb37lRaiflrxyqXzt5StlmCoDh3AERfDgDCpwBVWoAYEe3MMTPDvceXRenNdp6ZIz6zmAP3LefgDE05Er</latexit>a of 
<latexit sha1_base64="nkaTw7/8H5c0ghlozQMPzcxhWH4=">AAAB73icbZC7SgNBFIbPxluMt6ilzWAixCbsWkQ7A1pYRjAXSEKYnZ1NhszOrjOzQljyDIKNhSK2voOVj2Dng9iqk0uhiT8MfPz/Ocw5x404U9q2P6zUwuLS8kp6NbO2vrG5ld3eqakwloRWSchD2XCxopwJWtVMc9qIJMWBy2nd7Z+N8voNlYqF4koPItoOcFcwnxGsjeVBHs4h//Xdyebsoj0WmgdnCrnT18Ln223rsNLJvre8kMQBFZpwrFTTsSPdTrDUjHA6zLRiRSNM+rhLmwYFDqhqJ+N5h+jAOB7yQ2me0Gjs/u5IcKDUIHBNZYB1T81mI/O/rBlr/6SdMBHFmgoy+ciPOdIhGi2PPCYp0XxgABPJzKyI9LDERJsTZcwRnNmV56F2VHRKxdKlkyuXYKI07ME+FMCBYyjDBVSgCgQ43MEDPFrX1r31ZD1PSlPWtGcX/sh6+QFqQJNJ</latexit>

D
<latexit sha1_base64="nkaTw7/8H5c0ghlozQMPzcxhWH4=">AAAB73icbZC7SgNBFIbPxluMt6ilzWAixCbsWkQ7A1pYRjAXSEKYnZ1NhszOrjOzQljyDIKNhSK2voOVj2Dng9iqk0uhiT8MfPz/Ocw5x404U9q2P6zUwuLS8kp6NbO2vrG5ld3eqakwloRWSchD2XCxopwJWtVMc9qIJMWBy2nd7Z+N8voNlYqF4koPItoOcFcwnxGsjeVBHs4h//Xdyebsoj0WmgdnCrnT18Ln223rsNLJvre8kMQBFZpwrFTTsSPdTrDUjHA6zLRiRSNM+rhLmwYFDqhqJ+N5h+jAOB7yQ2me0Gjs/u5IcKDUIHBNZYB1T81mI/O/rBlr/6SdMBHFmgoy+ciPOdIhGi2PPCYp0XxgABPJzKyI9LDERJsTZcwRnNmV56F2VHRKxdKlkyuXYKI07ME+FMCBYyjDBVSgCgQ43MEDPFrX1r31ZD1PSlPWtGcX/sh6+QFqQJNJ</latexit>

D

量化谓词  在数据集  上的执行效率p D
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贡献点二： 面向基于规则的实体过滤的执行计划优化

输⼊：规则 
✓
✓
✓
输出：执⾏计划 
✓步骤 1：对谓词和规则进行排序：使用局部敏感哈希量化辨识度； 使用浅层模型和日志估算评估成本

ω1 : t.color = s.color→t.price = s.price→t.sname = s.sname→t.pname ↑ED s.pname ↓ t.eid = s.eid
ω2 : t.sname = s.sname → t.description ↑JD s.description ↓ t.eid = s.eid
ω3 : t.saddress →ED s.saddress↑t.description →JD s.description ↓ t.eid = s.eid

 
ˆcosta(p,D) = Norm(

∑

(t1,t2)→D↑D

N (p, t1, t2))
 
sp(p,D) = Norm(

√√√√1

k

k∑

i

(bi →
|D|
k

)2)

 
1→ sp(p,D)
ˆcosta(p,D)

量化谓词  在数据集  上的执行效率p D量化在数据  上满足谓词  的可能性D p

代价模型
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贡献点二： 面向基于规则的实体过滤的执行计划优化

输⼊：规则 
✓
✓
✓
输出：执⾏计划 
✓步骤 1：对谓词和规则进行排序：使用局部敏感哈希量化辨识度； 使用浅层模型和日志估算评估成本
✓步骤 2：构建执行树：复用共享前缀谓词的评估结果
✓步骤 3：序列化执行树：避免递归带来的线程计算差异

ω1 : t.color = s.color→t.price = s.price→t.sname = s.sname→t.pname ↑ED s.pname ↓ t.eid = s.eid
ω2 : t.sname = s.sname → t.description ↑JD s.description ↓ t.eid = s.eid
ω3 : t.saddress →ED s.saddress↑t.description →JD s.description ↓ t.eid = s.eid
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实验分析

实验总结 
✓ HyperBlocker 性能优于现有实体过滤并行方案，比竞争对手平均快 12.3 倍 。
✓与 SOTA 实体匹配方法结合使用，可在保持准确率的同时节省至少 30% 时间 。
✓其执行计划优化器通过高效评估顺序和基于学习的 LSH 成本估算，使运行时间提升 12.4 倍 ，并超越 

PostgreSQL 的执行计划
✓ GPU 优化带来 3.4 倍提升，而缺少并行滑动窗口和任务窃取策略时，性能平均下降 43.1% 和 28.8% 
✓异步流水线架构表现优异，较同步架构提速至少 2.1 倍

RapidMatch CECI DPiso Ours
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8
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e
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图模式匹配阶段性能 整体性能
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研究归纳:单机大规模图数据查询系统关键技术研究

研究内容⼀

⾯向单机图查询的⾼效编程模型与计算模式研究

研究内容⼆

⾯向单机图查询的输⼊输出
优化与资源分配机制研究

研究内容三

⾯向单机图查询的GPU加
速技术研究

研究内容四

⾯向图实体识别的专业图查询系统优化研究

降低数据传输开销
提升GPU利⽤

优化资源分配

实现从通⽤图查询
到专⽤图查询的⾼效拓展

⾼通⽤性

强专⽤性

⾼性能



未来工作展望
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未来工作展望

向更复杂的应⽤场景
深度拓展

新硬件

金融

新能源

AI4 DB & Sys.

Filtering

Query optimizing

…

Resource 
scheduling

Index

Search
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ABSTRACT
This paper studies rule-based blocking in Entity Resolution (ER).
We propose HyperBlocker, a GPU-accelerated system for blocking
in ER. As opposed to previous blocking algorithms and parallel
blocking solvers, HyperBlocker employs a pipelined architecture
to overlap data transfer and GPU operations. It generates a data-
aware and rule-aware execution plan on CPUs, for specifying how
rules are evaluated, and develops a number of hardware-aware
optimizations to achieve massive parallelism on GPUs.

Using real-life datasets, we show that HyperBlocker is at least
6.8→ and 9.1→ faster than prior CPU-powered distributed systems
and GPU-based ER solvers, respectively. Better still, by combining
HyperBlocker with the state-of-the-art ER matcher, we can speed
up the overall ER process by at least 30% with comparable accuracy.

PVLDB Reference Format:
Xiaoke Zhu, Min Xie, Ting Deng, Qi Zhang. HyperBlocker: Accelerating
Rule-based Blocking in Entity Resolution using GPUs. PVLDB, 18(2): 308 -
321, 2024.
doi:10.14778/3705829.3705847

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/SICS-Fundamental-Research-Center/HyperBlocker.

1 INTRODUCTION
Entity resolution (ER), also known as record linkage, data dedupli-
cation, merge/purge and record matching, is to identify tuples that
refer to the same real-world entity. It is a routine operation in many
data cleaning and integration tasks, such as detecting duplicate
commodities [34] and !nding duplicate customers [22].

Recently, with the rising popularity of deep learning (DL) mod-
els, research e"orts have been made to apply DL techniques to
ER. Although these DL-based approaches have shown impressive
accuracy, they also come with high training/inference costs, due
to the large number of parameters. Despite the e"ort to reduce
parameters, the growth in the size of DL models is still an inevitable
trend, leading to the increasing time for making matching decisions.

In the worst case, ER solutions have to spend quadratic time ex-
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Proceedings of the VLDB Endowment, Vol. 18, No. 2 ISSN 2150-8097.
doi:10.14778/3705829.3705847

(a) Execution time (b) Memory cost
Figure 1: DL-based blocking vs. rule-based blocking

amining all pairs of tuples. As reported by Thomson Reuters, an ER
project can take 3-6 months, mainly due to the scale of data [20]. To
accelerate, most ER solutions divide ER into two phases: (a) a block-
ing phase, where a blocker discards unquali!ed pairs that are guar-
anteed to refer to distinct entities, and (b) a matching phase, where
a matcher compares the remaining pairs to !nally decide whether
they arematched, i.e., refer to the same entity. The blocking phase is
particularly useful when dealing with large data and “is the crucial
part of ER with respect to time e#ciency and scalability” [65].

To cope with the volume of big data, considerable research has
been conducted on blocking techniques. As surveyed in [50, 65], we
can divide blocking methods into rule-based [20, 35, 39, 44, 64] or
DL-based [24, 40, 77, 79], both have their strengths and limitations.

DL-based blocking methods typically utilize pre-trained DL mod-
els to generate embeddings for tuples and discard tuple pairs with
low similarity scores. While DL-based blocking can enhance ER by
parallelizing computation and leveraging GPU acceleration [42], it
often comes with long runtime and high memory costs. To justify
this, we conducted a detailed analysis on DeepBlocker [77], the
state-of-the-art (SOTA) DL-based blocker in Figure 1. We picked a
rule-based blocker (a prototype of our method) with comparable ac-
curacy withDeepBlocker and compared their runtime and memory.
The evaluation was conducted on a machine equipped with V100
GPUs using the Songs dataset [59], varying the number of tuples.
When running on one GPU, the runtime of DeepBlocker increases
substantially when the number of tuples exceeds 40k. Worse still,
it consumes excessive memory due to the large embeddings and
intermediate results during similarity computation. Although the
runtime of DeepBlocker can be reduced by using more GPUs, the
issue remains, e.g., even with four GPUs in Figure 1(a),DeepBlocker
is still slower than the rule-based blocker that runs on one GPU.

In contrast, rule-based blocking methods demonstrate potential
for achieving scalability by leveraging multiple blocking rules. Each
rule employs various comparisons with logical operators such as
AND, OR, and NOT to discard unquali!ed tuple pairs. For instance,
a blocking rule for books may state “If titles match and the number
of pages match, then the two books match” [46]. We refer to the
comparisons in this rule as equality comparisons, as they require
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ABSTRACT
This paper presentsMiniGraph, an out-of-core system for querying
big graphs with a single machine. As opposed to previous single-
machine graph systems, MiniGraph proposes a pipelined architec-
ture to overlap I/O and CPU operations, and improves multi-core
parallelism. It also introduces a hybrid model to support both vertex-
centric and graph-centric parallel computations, to simplify parallel
graph programming, speed up beyond-neighborhood computations,
and parallelize computations within each subgraph. The model
induces a two-level parallel execution model to explore both inter-
subgraph and intra-subgraph parallelism. Moreover, MiniGraph
develops new optimization techniques under its architecture. Using
real-life graphs of di!erent types, we show thatMiniGraph is up
to 76.1→ faster than prior out-of-core systems, and performs better
than some multi-machine systems that use up to 12 machines.

1 INTRODUCTION
Big graph analytics has mostly been a privilege of big companies
by employing a cluster of machines. For instance, to compute con-
nected components of a graph with billions of vertices and trillions
of edges, Google employs a 1000-node cluster with 12000 processors
and 128 TB of aggregated memory [66]. To mine 3-FSM with sup-
port = 25000 on a million-edge graph, DistGraph [68] uses 128 IBM
BlueGene/Q supercomputers and 32,768 GB memory. A number
of graph systems have been developed to explore multi-machine
parallelism, e.g., [3, 27, 33, 35, 52, 56, 69, 72, 76, 79, 82]. However,
big graph analytics via multiple machines is often beyond reach of
small companies, which cannot a!ord such enterprise clusters.

Moreover, many parallel graph systems “have either a surpris-
ingly large COST, or simply underperform one thread” [53]. For
example, single-source shortest path (SSSP) is “essentially not scal-
able with an increasing number of machines” [74]. This is because
multi-machine systems typically adopt the shared-nothing archi-
tecture, and the more machines are used, the heavier their commu-
nication cost is incurred. In addition, machines in such a system
are often under-utilized due to unbalanced workload.

To rectify the limitations of the multi-machine systems, single-
machine systems have been studied to explore multi-core par-
allelism, notably out-of-core systems to process data that is too
large to "t into the main memory of a single machine at once
[11, 32, 45, 51, 62, 75, 83]. The systems are developed on a machine
that has a number of CPU cores, but limited memory capacity and
disk I/O bandwidth. To get over the bottleneck, these systems have
mostly focused on how to optimize I/O and memory e#ciency.

Despite the e!orts, disk I/O remains the bottleneck of the single-
machine systems. ConsiderWeakly Connected Components (WCC).
Given a graph𝐿 ,WCC is to compute the maximum subgraphs of
𝐿 in which all vertices are connected to each other via a path, re-
gardless of the direction of edges. Consider GridGraph [83], a state-
of-the-art out-of-core system featuring optimal I/O. We run the

System friendster (mean distance: 5.1) web-sk (mean distance: 13.7)

# Supersteps Disk Read # Supersteps Disk Read

GridGraph 21 135 GB 120 367 GB
MiniGraph 6 74 GB 9 82 GB

Table 1: WCC performance on GridGraph and MiniGraph.

out-of-boxWCC implementation of HashMin [77] that comes with
GridGraph as a benchmarking application. The test was conducted
on a workstation powered with a 10-core CPU with hyperthreading
and 16 GB DDR4 memory. Graph𝐿 is friendster or web-sk [61];
both have↑1.8 billion edges, and amount to↑31 GB, about twice the
memory size. We measure its system I/O using iostat. As shown
in Table 1, while the two graphs are similar in size, GridGraph
incurs drastically di!erent I/O costs. It induces 2.7→ disk read on
web-sk as on friendster, which is relatively denser.

An in-depth analysis reveals that the excessive I/O often stems
from the vertex-centric model [33, 52, 83] adopted by GridGraph
for parallel computation, referred to as VC. Under VC, an algorithm
employs a user-de"ned function to process the immediate neighbor-
hood of each vertex (or edge), and exchanges information between
vertices via message passing. To send a message from a memory-
resident vertex to a memory-absent one, it inevitably requires swap-
ping their data in and out of the memory; as a consequence, VC
generally incurs more disk I/O when 𝐿 has a larger diameter.

Moreover, while VC is natural for graph algorithms such as
PageRank [17] and HashMin [77] (forWCC), it is neither easy to
write nor e#cient to execute e.g., an optimizedWCC algorithm via
Breath-First Search [37] and graph pattern matching algorithms
with subgraph isomorphism or graph simulation [23] under VC.

Canwe systematically reduce the I/O cost of an out-of-core graph
system and improve multi-core parallelism? Given a computational
problem, would other parallel models "t it better than VC?

MiniGraph. To answer these questions, we developMiniGraph, an
out-of-core system for graph computations with a single machine.
It is the "rst single-machine system that extends the graph-centric
model (GC) of [24, 27] from multiple machines to multiple cores.
It shows that GC speeds up beyond-neighborhood computation
and reduces I/O, and moreover, simpli"es parallel programming by
parallelizing existing sequential algorithms across cores.

As shown in Table 1, when computingWCC over friendster
(resp. web-sk), the bene"t of the beyond-neighborhood computa-
tion (GC) is evident:MiniGraph (a) takes 6 (resp. 9) supersteps to
converge under the bulk asynchronous model (BSP) [70], as op-
posed to 21 (resp. 120) steps with GridGraph; (b) reads 74 GB (resp.
82 GB) of data in contrast to 135 GB (resp. 367 GB) of GridGraph;
and (c) is less sensitive to the distribution of the input graphs.

However, it is nontrivial to migrate GC to a single-machine
system. It introduces new challenges such as memory constraint
and I/O cost. MiniGraph approaches the following challenges that
are non-existent in prior GC systems: (a) out-of-core computations
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graphs. It proposes (1) a work"ow that better #ts a single machine by pipelining CPU, GPU and I/O operations;
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Abstract—This paper studies deep and collective entity resolu-
tion (ER). As opposed to a single pass of pairwise comparison of
tuples in a single table, deep ER recursively identifies tuples that
refer to the same entity by making use of matches in the previous
rounds, and collective ER determines matches by correlating
information across multiple tables. We propose a fixpoint model
for deep and collective ER, by chasing with logic rules that
are collectively defined across multiple relations and may embed
machine learning classifiers for ER as predicates. While powerful,
we show that deep and collective ER is intractable. To scale
with large datasets, we develop a data partitioning strategy
and a parallel algorithm underlying the fixpoint model, which
guarantee to reduce runtime when more processors are used.
Using real-life data, we experimentally verify that the approach
improves the ER accuracy and is parallelly scalable.

I. INTRODUCTION
Entity resolution (ER) has been a longstanding challenge.

Also known as record matching, record linkage and duplicate
detection, ER is to identify whether two tuples in a dataset
refer to the same real-world entity. There has been a host of
work on ER, based on either logic rules (e.g., [30], [16], [10])
or machine learning (ML) models (e.g., [50], [55], [9]).

ER is conceptually conducted on a single relation via a
single pass of pairwise comparison of the tuples in the table,
possibly with blocking [66], [49] and windowing [39] to speed
up the process. However, there is still room to improve its
accuracy. (1) We can often identify new matches by making
use of matches deduced earlier. This suggests that we conduct
ER recursively, referred to as deep ER, instead of inspecting
tuple pairs only once. (2) While it has long been recognized
that accurate ER needs to collectively correlate information
across multiple tables [17], no data quality rules are in place
to express collective ER, and even the complexity of collective
ER is not yet settled. In particular, blocking and windowing no
longer work for collective ER since they target a table of ho-
mogeneous tuples, while collective ER works on multiple (het-
erogeneous) tables. (3) Rule-based methods and ML models
are often taken as separate approaches. Is it possible to benefit
from both and improve the ER accuracy by unifying the two?

Example 1: E-commerce companies want to identify mer-
chant accounts that conduct fraudulent behaviors, e.g., account
abuse [68] when two merchants boost sales by buying the
same products from each other. As an example, consider four
relations shown in Tables I–IV, for custermors, shops, products
and orders, with the following schemas, respectively:

◦ Customers(cno, name, phone, addr, pref),
◦ Shops(sno, sname, owner, email, loc),
◦ Products(pno, pname, price, desc), and
◦ Order(ono, buyer, seller, item, IP).
The company finds that shops s2 and s4 buy the same

product from each other, as follows: (1) customer c4 (the

owner of shop s4, tuple t9 in D2) buys product p2 from shop
s2 (t15 in D4); (2) customer c1 buys the same product p2 from
s4 (t18 in D4); and (3) c1 is the owner of s2 (by deduction).

However, the deduction is nontrivial. It needs several steps.
(1) The company finds that c2 and c3 are the same customer
as they share the same name, phone and addr, by using a rule.
(2) It identifies products p2 and p3 in D3, since they have the
same name and semantically similar descriptions. Specifically,
it employs an ML model to match p2.desc and p3.desc.
(3) It matches shops s4 and s5 in D2 since they have the same
email and similar names in D2, and their owners c4 and c5
(tuples t9 and t10 in D2) have the same phone in D1 (t4 and
t5 in D1). This step is collectively checked across D2 and D1.
(4) It identifies customers c1 and c3 in D1 since they have
the same address and similar names, and moreover, they buy
product p2 (i.e., p3) in shop s4 (tuple t9 in D2) from the same
IP address 113.55.126.9 (tuples t16 and t17 in D4). This step
is “deep” ER and makes use of the prior matches of shops s4
and s5 in D2 (step 3) and products p2 and p3 in D3 (step 2).
(5) Now it concludes that c1 and c2 are the same customer
since both c2 and c1 match c3 (steps 1 and 4); hence the
fraudulence (c1 owns s2, which buys product p2 from s4). ✷

The example highlights the need for conducting deep and
collective ER, and for using both logic rules and ML models.

Contributions & organization. This paper studies deep and
collective ER, by unifying logic rules and ML models.

(1) Embedding ML in rules (Section II). Following [31], we
extend matching dependencies (MDs [30], a class of ER rules)
by (a) embedding ML classifiers for ER as predicates, and (b)
supporting collective ER on multiple tables. We refer to the
extended MDs as MRLs (Matching Rules with mL). We show
how MRLs improve ER accuracy and interpret ML predictions.

(2) A fixpoint model (Section III). We model deep and collec-
tive ER as a form of the chase with a set Σ of MRLs [58]. The
chase is Church-Rosser, i.e., it converges at the same set of
matches no matter what MRLs in Σ are used and in what order
the rules are applied. We show that the improved ER accuracy
comes at a price of increased complexity: while deep ER is in
polynomial time (PTIME), collective ER becomes intractable
in the absence of recursion. To scale with large datasets, we
propose a fixpoint model for deep and collective ER, and
parallelize the fixpoint computation in the following sections.

(3) Data partitioning (Section IV). To parallelize the fixpoint
process, we develop a strategy to partition the data, in place of
blocking [66], [49]. The partitioning strategy adapts the Hyper-
cube algorithm of [6], [14] for parallel processing of conjunc-
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其他实验结果
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Result: other results of MiniGraph

Accuracy and effectiveness of cost model formulations

Scalability of MiniGraph
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Result: Effectiveness of EPG

PostGreSQL的执⾏计划

SELECT * FROM DBLP, ACM  
WHERE (DBLP.authors ≈ ACM.authors  
  AND DBLP.title ≈ ACM.title  
  AND DBLP.year = ACM.year)  
OR (DBLP.venue ≈ ACM.venue  
  AND DBLP.title ≈ ACM.title  
  AND DBLP.authors = ACM.authors)

SELECT * FROM DBLP, ACM  
WHERE DBLP.venue ≈ ACM.venue  
  AND DBLP.title ≈ ACM.title  
  AND DBLP.author = ACM.author;

SELECT * FROM DBLP, ACM  
WHERE DBLP.title ≈ ACM.title  
  AND DBLP.authors ≈ ACM.authors  
  AND DBLP.year = ACM.year;

SELECT * FROM DBLP, ACM  
WHERE DBLP.authors ≈ ACM.authors  
  AND DBLP.title ≈ ACM.title  
  AND DBLP.year = ACM.year;

发现 
✓ Query2 性能优于 Query1（20%）源于 PostgreSQL 严格遵循 UDF (User Define Function) 声明顺序执
行，未能基于计算代价优化执行计划

✓ Query4因OR运算符导致索引失效，被迫采用顺序扫描，其平均执行时间为Query2与Query3的12倍

Query 1 Query 2

Query 3
Query 4
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Result: Effectiveness of EPG

Results

Vs other execution plan

Baseline 
✓ TupleX[SIGMOD’21]
✓ Query optimizer of PostgreSQL


