
Deep and Collective Entity Resolution 
in Parallel

Ting Deng Wenfei Fan Ping Lu Xiaomeng Luo Xiaoke Zhu Wanhe An

Beihang University 

    University of Edinburgh
 Shenzhen Institute of Computing Sciences 

演示者
演示文稿备注
Hello, my name is Ting. I’d like to introduce our work “Deep and Collective Entity Resolution in Parallel”. 
It is a joint work with Wenfei, Ping, Xiaoment, Xiaoke and Wanhe. 




Deep and Collective Entity resolution (ER)

 Identify whether two tuples in a dataset refer to the same real-world entity
 It has been a longstanding challenge to improve the accuracy of ER

Identify new matches 
by making use of 

matches deduced earlier 

Deep ER (Recursion)
Collectively correlate 

information across 
multiple tables 

Collective ER

Benefit from both and 
improve the accuracy by 

unifying the two methods

Unifying Logic and ML

+ +

Deep and collective ER  by unifying logic rules and ML models 

演示者
演示文稿备注
Entity resolution, is to identify whether two tuples in a dataset refer to the same real-world entity. 

In this work, we present model and algorithms to deep and collective entity resolution, by unifying logic rules and machine learning models, to improve the accuracy of entity resolution.
 So we can identify new matches by making use of matches deduced earlier, and by  collectively correlating  information across multiple tables.

 Also, it can benefit from both logic and machine learning models to improve the accuracy.



Matching Rules with mL (MRLs)
MRL 𝜑𝜑:  X ⟶ l

Precondition X : 
A conjunction of predicates over a database schema R

p:: = R(t) | t. A = c | t. A = s. B | M(t[𝐴̅𝐴], s[ �𝐵𝐵]) 

Consequence l : 
An id predicate  t.id= s.id or 

an ML predicate M(t[𝐴̅𝐴], s[ �𝐵𝐵]).

Deep and Collective ER

  Deduces a set Γ of matches and validated ML predications by applying  MRLs in Σ
  Modeled as an extension of the chase with MRLs,  with the Church-Rosser property 

 Extend matching dependencies by embedding with well-trained ML classifiers as ML predicates
  t.id = s. id : the entities represented by t and s match, then refer to the same entity 

Decision problem Number of relations id predicates in the Prec.
Deep and Collective ER Unbounded Yes NP-complete
Collective ER (not Deep) Unbounded No NP-complete
Deep ER (not collective) Fixed Yes PTIME

Parallel fixpoint 
model

演示者
演示文稿备注
We extend matching dependencies  by embedding well-trained ML classifiers as  predicates.  We call our rules MRL, for short.


Based on the MRLs, Deep and Collective entity resolution is to deduce a set of matches and validated ML predications by applying  MRLs.
The deduction is modeled as an extension of the chase with MRLs, with the church-rosser property.
That is, It always converges at the same set of matches no matter what MRLs are used and in what order they are applied. 

However, since the decision problem is intractable, we present  a parallel fixp-point model to reduce the computation cost and communication cost.





Updated-driven Parallel fixpoint model under BSP model
Partitioned dataset D= (W1, …, Wn), distributed to workers P1, …, Pn

Update-driven fixpoint computation: no communication of raw data

Worker 
P1

Worker 
Pn

Γ10  = A(Σ, Wi) 
Master 

P0

…

Γ𝑛𝑛0  = A(Σ, Wi) 

Worker 
P1

Worker 
Pn

…
∆𝚪𝚪𝟏𝟏𝟎𝟎 ∆𝚪𝚪𝒏𝒏𝟎𝟎 

Γ11 = A△( Σ, Wi , 
∆𝜞𝜞𝟏𝟏𝟎𝟎 ) 

Γ𝑛𝑛1 = A△( Σ, Wi , ∆𝚪𝚪𝒏𝒏𝟎𝟎 ) 

Partial evaluation 
by a sequential 

algorithm A 

Repeated incremental 
evaluation by an 

incremental sequential 
algorithm A△ 

Matches Γ=⋃𝑖𝑖∈[1,𝑛𝑛] Γ𝑖𝑖𝑟𝑟 =⋃𝑖𝑖∈[1,𝑛𝑛] Γ𝑖𝑖𝑟𝑟+1
∆𝚪𝚪𝒊𝒊𝒓𝒓 = ∅, i∈[1, n] 

Data partitioning 
strategy 

Parallel deduction 
algorithm  

Local matches 

Updates

New matches

演示者
演示文稿备注
The parallel model  conducts updated-driven  fixpoint computation under BSP model. 

It has two phases, including partial evaluation and repeated incremental evaluation. 


In the first step, All workers first deduces its local matches in parallel,  and send their local matches to the master.

After receiving local matches from all the workers, the master routes the new matches to relevant workers as updates. 

Then  each worker incrementally deduce the new matches by an incremental sequential algorithm and send them to the master. 

The process iterates until no more new matches can be deduced and the master returns the union of all matches it receives.
 
Note that, there is no communication of raw data between the master and the workers. 
So we develop a data partitioning strategy and parallel deduction algorithms to implement the fix-point computation. 
 




Data partitioning for parallel fixpoint computation
Extend Hypercube (HC) to handle a set of MRLs  with multiple query optimization (MQO)

 Partition the data with the minimum hash function computation (NP-complete) 

A CQ query Q can be answered locally
Q(D)=⋃𝑖𝑖∈[1,𝑛𝑛] Q(Wi )  

W1 W2 Wn
… 

D
Hypercube

Q +

An heuristic partitioning algorithm HyPart /A strategy to assign the hash functions 

Reuse the hash function 
computations as much as possible

Reduce the computation cost
Send a tuple with the same hash functions  

to the same worker for different rules

Reduce the communication cost

H=[n1]× ⋯×
[nl]

D ⊨ Σ can be verified locally 
D ⊨ Σ iff Wi ⊨ 𝛴𝛴, i ∈[1, n]

W1 W2 Wn
… 

D
HyPart Σ + H=[n1]× ⋯×

[nl]

Using  MQO to find the 
common predicates of MRLs

Improve the performance

MQO

演示者
演示文稿备注
For the data partitioning, We extend the Hypercube algorithm to handle a set of MRLs with multiple query optimization, instead of applying it to the dataset for each MRL, to avoid multiple accesses to the dataset.

That is, we want to partition the dataset with the minimum hash function computation.
However, it is intractable.

So we develop an heuristic partitioning algorithm to assign the hash functions.
It can reduce the computation cost and also reduce the communication cost, that is we reuse the hash function computations as much as possible, and send a tuple with the same hash functions  to the same worker for different rules. 

The algorithm also guarrentees it can be verified locally whether the dataset satisfies all the MRLs, and then support the parallel fixpoint model










A Parallel scalable deduction algorithm

Worker 
P1

Worker 
Pn

Γ10 = A(Σ, Wi) 
Master 

P0

…

Γ𝑛𝑛0 = A(Σ, Wi) 

Worker 
P1

Worker 
Pn

…
∆𝚪𝚪𝟏𝟏𝟎𝟎 ∆𝚪𝚪𝒏𝒏𝟎𝟎 

Γ11 = A△( Σ, Wi , ∆𝜞𝜞𝟎𝟎𝟎𝟎 ) Γ𝑛𝑛1 = A△( Σ, Wi , ∆𝚪𝚪𝒏𝒏𝟎𝟎 ) 

Matches Γ=⋃𝑖𝑖∈[1,𝑛𝑛] Γ𝑖𝑖𝑟𝑟  =⋃𝑖𝑖∈[1,𝑛𝑛] Γ𝑖𝑖𝑟𝑟+1
∆𝚪𝚪𝒊𝒊𝒓𝒓 = ∅, i∈[1, n] 

Partial evaluation by Deduce（A）

Deducing matching in Γ for each MRL and 
each of its valuations

Repeated incremental evaluation by 
IncDeduce （A△）

Incrementally expand Γ by using an 
update-driven strategy

Avoid to store all intermediate results and 
reduce the repeated valuations 

Optimization to speed up the process

Parallelly scalable: the more processors are used, the faster the algorithms run 

Local matches 

Updates

New matches

演示者
演示文稿备注
Finally, We develop algorithms to implement the partial evaluation and incremental evaluation in the parallel fix-point model, 
with optimizations to avoid to store all intermediate results and reduce the repeated valuations 

Our algorithm is parallelly scalable., that is, the more processors are used, the faster the algorithm run 
 















Experimental results 

Accuracy
○  23% and 38% more accurate than ML and logical methods for ER, resp.
○  outperforms deep ER and collective ER by 21% and 32%, resp. 

Efficiency
○  505s on datasets of 30M tuples using 16 machines. 
○  faster than 7 out of 8 state-of-the-art ER baselines. 

Scalability
○  Parallelly scalable with the number n of processors used: 3.56 times faster 

when n increases from 4 to 32 

 Using five real-life Datasets and synthetic datasets, compared with eight state-of-the-art 
baselines

Models and Algorithms for Deep and Collective ER by unifying logic and ML

演示者
演示文稿备注
The experimental results show that our algorithm outperforms the machine learning models and logical methods on accuracy, and it also outperforms deep entity resolution and collective entity resolution. 

Also, Our algorithm  scales well with large datasets, and is parallelly scalable with the number  of processors used. 





 
 



	Deep and Collective Entity Resolution �in Parallel
	Deep and Collective Entity resolution (ER)
	Matching Rules with mL (MRLs)
	Updated-driven Parallel fixpoint model under BSP model
	Data partitioning for parallel fixpoint computation
	 A Parallel scalable deduction algorithm
	Experimental results 

