

Deep and Collective Entity Resolution in Parallel

Ting Deng Wenfei Fan Ping Lu Xiaomeng Luo Xiaoke Zhu Wanhe An

Beihang University
University of Edinburgh
Shenzhen Institute of Computing Sciences

Deep and Collective Entity resolution (ER)

- Identify whether two tuples in a dataset refer to the same real-world entity
- It has been a longstanding challenge to improve the accuracy of ER

Deep and collective ER by unifying logic rules and ML models

Deep ER (Recursion)

Identify new matches by making use of matches deduced earlier

Collective ER

Collectively correlate information *across* multiple tables

Unifying Logic and ML

Benefit from both and improve the accuracy by unifying the two methods

Matching Rules with mL (MRLs)

 $\mathsf{MRL}\ \varphi \colon X \longrightarrow I$

Precondition X:

A conjunction of *predicates* over a database schema \mathcal{R} $p::=R(t)\mid t.\ A=c\mid t.\ A=s.\ B\mid \mathcal{M}(t[\bar{A}],s[\bar{B}])$

Consequence *l*:

An *id predicate* t.id=s.id or an *ML predicate* $\mathcal{M}(t[\bar{A}], s[\bar{B}])$.

- Extend matching dependencies by embedding with well-trained ML classifiers as ML predicates
- t.id = s.id: the entities represented by t and s match, then refer to the same entity

Deep and Collective ER

- Deduces a set Γ of matches and validated ML predications by applying MRLs in Σ
- Modeled as an extension of the chase with MRLs, with the Church-Rosser property

Decision problem	Number of relations	id predicates in the Prec.		
Deep and Collective ER	Unbounded	Yes	NP-complete	
Collective ER (not Deep)	Unbounded	No	NP-complete	
Deep ER (not collective)	Fixed	Yes	PTIME	

Parallel fixpoint model

Updated-driven Parallel fixpoint model under BSP model

Partitioned dataset $\mathcal{D}=(W_1,...,W_n)$, distributed to workers $P_1,...,P_n$

Update-driven fixpoint computation: no communication of raw data

Data partitioning for parallel fixpoint computation

Extend Hypercube (HC) to handle a set of MRLs with multiple query optimization (MQO)

Partition the data with the minimum hash function computation (NP-complete)

An heuristic partitioning algorithm HyPart /A strategy to assign the hash functions

Reduce the *computation* cost

Reuse the hash function computations as much as possible

Reduce the *communication* cost

Send a tuple with the same hash functions to the same worker for different rules

Improve the performance

Using MQO to find the common predicates of MRLs

A Parallel scalable deduction algorithm

Partial evaluation by Deduce (A)

Deducing matching in Γ for each MRL and each of its valuations

Repeated incremental evaluation by IncDeduce $(A\triangle)$

Incrementally expand Γ by using an update-driven strategy

Optimization to speed up the process

Avoid to store all intermediate results and reduce the repeated valuations

Experimental results

 Using five real-life Datasets and synthetic datasets, compared with eight state-of-the-art baselines

Accuracy

- 23% and 38% more accurate than ML and logical methods for ER, resp.
- outperforms deep ER and collective ER by 21% and 32%, resp.

Efficiency

- 505s on datasets of 30M tuples using 16 machines.
- faster than 7 out of 8 state-of-the-art ER baselines.

Scalability

• **Parallelly scalable** with the number n of processors used: 3.56 times faster when n increases from 4 to 32