/Cl\
VLI

\
AR
ancouver

MiniGraph: Querying Big Graphs with a Single
Machine

Xiaoke Zhu, Yang Liu, Shuhao Liu, and Wenfei Fan

Graphs: Everything is Naturally Connected

\ o 32 min
) of Alternate
Te . _

China

BAAREKYE

I \5

-)
\\‘\,
. Shenzhen =
Overseasy, SHENZHEN
Chinese City, CIVIC'CENTER
Nanshan V. N Iﬂr%\@_ g‘i?tzioﬁg\;&irsﬁlz RUIMERBO
WINDOW OF AL Piy:-2 ._,/’—f*l‘—__- ——]
THE/WORLD EE— QF b
el / \ FUTIAN

\\\t\\\\ (- E X

Road networks

We use Graphs everyday and everywhere.

Graphs: Everything is Naturally Connected

RO\A

Road.networks
Network topology

We use Graphs everyday and everywhere.

Graphs: Everything is Naturally Connected

JRoad.networks
Network topology

: Social networks
i p ' Protect, Personalize, and Power

., ALL YOUR DEVICES.

Nanshan

R
= e

Michelle Royle
CEO Mobile Outfitters Australia

Talks about #tech, #innovation, #entrepreneur, #substainability, and #i
Contact info
www.moutfitters.com

8,074 followers - 500+ connections

We use Graphs everyday and everywhere.

Graphs: Everything is Naturally Connected

Nanshan

Michelle Royle

CEO Mobile Outfitters Australia

Talks about #tech, #innovation, #entrepreng
Contact info

www.moutfitters.com

8,074 followers - 500+ connections

Road . networks

Network topology
Social networks

_

Ul JICH Protect, Personalize. cind Power
andbidddtiad ALL YOUR DEVICES.

Google macys KG
INS ,
28] , K MACYS
(Macy's)
el
EFRSHIE: +1800-289-6229

gl A EFEIBREBA
BINZF: 1858 &F, ALV
SEB: AL

We use Graphs everyday and everywhere.

Applications on Graph Data
Map Navigation|Fraud Detection Protein Interaction

\

00 0
A WY N
University.- O 0.0

Yuehai Campus '

Shenzhen

'q]

Road Network Social Media Biological Network Web Graph Transaction Network

== -_— _—

What is graph computing and why is it important? l

Existing Solutions

Shared memory

v Single-node and in-memory Limited capacity to big graphs
v Ligraiprorrr13], Galois[sosp13]

Why out-of-core graph system?

Existing Solutions
Shared memory

v Single-node and in-memory Limited capacity to big graphs
v Ligraiprorrr13], Galois[sosp13]

Distributed

v Multi-node and in-memory Irreqular structure, scalability problem
v GraphScope[vLbe21, SIGMOD"17], Beyond the reach of small companies
Pregelisiamop1o0], GluonpLoris;

Why out-of-core graph system?

Existing Solutions
Shared memory

v Single-node and in-memory Limited capacity to big graphs
v Ligraiprorrr13], Galois[sosp13]

Distributed

v Multi-node and in-memory Irreqular structure, scalability problem
v GraphScopejvLps21, sicmMoD*17], Beyond the reach of small companies
Pregelisiamop1o0], GluonpLoris;

To compute connected components of a graph with billions of vertices and trillions
of edges, Yahoo! employs a 1000-node cluster with 12000 processors
and 128 TB of aggregated memory.

Why out-of-core graph system?

Existing Solutions

Shared memory

v Single-node and in-memory Limited capacity to big graphs
v Ligraiprorrr13], Galois[sosp13]

Distributed
v Multi-node and in-memory Irreqular structure, scalability problem
v GraphScope[vLbe21, SIGMOD"17], Beyond the reach of small companies

Pregelisiamop10], GluonpLpr1s;,

Out-of-core
v Single-node and disk-based It is feasible due to promise
v GraphChijosbriz2), GridGraphiatcis, performance of SSD, NVMe el al.
MosalC[EuroSys'17] I/0O will become the bottleneck

How to improve the performance of out-of-core system?

A review of out-of-core system
Basic idea

If fragments have updates Read
Cache
Partitioning Read fragments Write updates {] i
Graph 9 p Memory Disk
Let fragments can fit into Converge Write
the memory.

The-state-of-art: GridGraph

v Vertex-centric model and BSP model.
v Read from source vertices, Write to destination vertices.
v 2-level hierarchy partitioning and skip block with no active edges.

:Chunk 1: NewPR W NewPR W NewPR ¥ NewPR W NewPR W PR D NewPR W

PR Deg PR Deg PR Deg

H . PR Deg PR Deg
o w—w—w—www
'e @1) | 24 (1,2) | (1,3) (1,2) | (1,3) (1,2) | (1,3) 11021 (1,2) | (1,3) 112(1,2) | (1,3) L2 (1,2)] (1,3)
Q', chunk2| 32) | @3 | + 1 2 (2,1) | (2,4) 1 2,1) | (2,9 1 2 (2,1) | (2,9) 11212124 2 (@21](@24 2] (@214
() L R - il @] [t{r]ea @y [1l1le2 @3] (1162 @3] [t |[@d)| 11|62]|@s3)
s 112 (42 1121 (4,2 12 (4,2 112 (42 1112 (4,2 112 (42

Block(2, 1)
Initialize Stream Block (1, 1) Stream Block (2, 1) Stream Block (1, 2) Stream Block (2, 2) Iteration 1 finishes

(a) An example graph (b) Grid representation

2D-partitioning Workflow

Why out-of-core graph system?

A review of out-of-core system

Findings after Profiling GridGraph

v Setting:

v WCC task.

¥ A machine powered with 20 cores 8 — [om J.“’
and SSD. g O 2000 4000 6000 s

v A graph with over 50 Millions edges
(50% data out of memory). (b) Active vertics & IO

v Findings: 2|

v The rate at which a task is limited by
the speed of the I/0. 2

v Unnecessary I/0O caused by less and R e
scattered active vertices. check point

If there is opportunity for improving the SOTA?

Graph-centric (GC) vs Vertex-centric (VC)

Superstep 1 #0ps: 32 Superstep2 #Ops 28 Superstep 3 #Ops 20 Superstep 4 #Ops: 8 Superstep 5

\" ERERE

b) VC execution in 5 supersteps.

Superstep 1: PEval #Ops: 16 Superstep 2: IncEval #Ops: 12 Superstep 3: IncEval #Ops: 4
0 O
OF
= I
® O=<D
Input graph G \0 10

(c) GC execution in 3 supersteps.

v VC takes many computations steps to propagate a piece of information from
a source to a destination, even if both appear in the same partition.
v GC allows information to flow freely inside a partition.

How to leverage GC?

Challenges & Opportunities

Parallelism

v GC exploits data-partitioned parallelism only. With limited memory capacity, it
would result in either underutilization of the CPU or graph fragmentation.

Out-of-core computation

v A out-of-core system has to resort to secondary storage. Managing the in-
memory and the on-disk parts of an input graph is crucial to performance.

Require solutions.

MiniGraph Architecture

The characters of MiniGraph

. . . APls : EMap : ! VMap : PEval IncEval Assemble
v A pipelined architecture to overlap I/O and | e

CPU . L StateManager____J[____ Scheduler ______ l
operations. r- 3 " ™ L'/_I 1 - |
___________________________ . ________4______________________ B, i
h \ 1 >
‘\ v - Discharge}'IJ

Inbound Thread Fool Outbound

Queue Evaluator || queue

A — Writer Evictor

/

“token Esubgrgph E]subgre}ph -subgraph ~» /0

(pending) (updating) (updated)

MiniGraph Architecture

The characters of MiniGraph

. . . APIs : EMap g VMap PEval IncEval Assemble
v A pipelined architecture to overlap /0 and ‘EY—m—m——set b
) | StateManaqer | | Scheduler |
CPU operations. & o Lo o S — :
.) B O G .

- Loader continuous reads a memory R S S S e

[}
\ >
N V n Discharge}'IJ

™ Thread Pool

Inbound Outbound i i
Evaluator

Queue Queue

absent subgraphs from disk.
- Evaluator is responsible for execution of
an application. >—— Writer Evictor
: : M S
« Discharger writes the data back to the s vz
disk.

subgraph subgraph subgraph ;
“token E](pending) EJ(updating) -(updated /o

MiniGraph Architecture
The characters of MiniGraph
PIE model

v A pipelined architecture to overlap I/0 and
CPU operations.

v A hybrid parallel model to support both the QFo) T - Q(Fn-1) @ PEval
data-partitioned parallelism of GC and the *|7 MessageStore ‘Jf’/

. . ()
operation-level parallelism of VC. E Q(Fy & Mp) Q(Fp_1 ® My_1)
\»E MessageStore j*'/ @ IncEval
&~ T,
Q(Fo @ My) Q(Fn—1® My,_1)

| 5 5
TN 0T Gaeseni

Enrich inter-G. GC parallelism with intra-G. VC parallelis

MiniGraph Architecture

PEval + EMap/VVMap (VC)

HashMin algorithm.
* Init: each vertex is assigned a distinct numeric label
v A pipelined architecture to overlap I/0 and * Run: each vertex collects the labels from its
CPU operations neighbors and update its own label with minimum
. » Border vertices: with an edge to another fragment.

The characters of MiniGraph

v A hybrid parallel model to support both the Eg;“;ﬁiﬁii;"

data-partitioned parallelism of GC and the IncEval + EMap/\VMap (VC) |

operation-level parallelism of VC. |

Incremental HashMin algorithm.
* Run: each vertex collects the labels from its ;| M; from
neighbors and update its own label

« Messages M.: changed for border vertices of F. \

Assemble

The union of all partial results.

Enrich inter-G. GC parallelism with intra-G. VC parallelis

MiniGraph Architecture

PEval + EMap/VVMap (VC)

HashMin algorithm.
* Init: each vertex is assigned a distinct numeric label

v A pipelined architecture to overlap 1/0 and * Run: each vertex collects the labels from its
neighbors and update its own label with minimum

The characters of MiniGraph

CPU operations. » Border vertices: with an edge to another fragment.

v A hybrid parallel model to support both the Push updaies to

- i border vertices.
data-partitioned parallelism of GC and the IncEval + EMap/\VMap (VC) |
operation-level parallelism of VC. |
Incremental HashMin algorithm.
_ PR) * Run: each vertex collects the labels from its 1| M, from

v Two Ie‘_’el p?ral!ehsm' Inter SUbgraph neighbors and update its own label ‘
parallelism via high-level GC abstraction, and |. Messages M:: changed for border vertices of . \
intra-subgraph parallelism for low-level VC

operations. Assemble

The union of all partial results.

Enrich inter-G. GC parallelism with intra-G. VC parallelis

MiniGraph Architecture

PEval + EMap/VVMap (VC)

HashMin algorithm.
* Init: each vertex is assigned a distinct numeric label

v A pipelined architecture to overlap 1/0 and * Run: each vertex collects the labels from its
neighbors and update its own label with minimum

The characters of MiniGraph

CPU operations. » Border vertices: with an edge to another fragment.

v A hybrid parallel model to support both the iy
data-partitioned parallelism of GC and the IncEval + EMap/\VMap (VC) |
operation-level parallelism of VC. |

Incremental HashMin algorithm.
* Run: each vertex collects the labels from its ;| M; from

Y TWO'Ie‘_’eI p?ral!ehsm: Inter'SUbgraph neighbors and update its own label
parallelism via high-level GC abstraction, and |. Messages M:: changed for border vertices of . \
intra-subgraph parallelism for low-level VC
operations. Assemble
v A learned sgheqluler: to further improve R utnddsatt e
hardware utilization.

Enrich inter-G. GC parallelism with intra-G. VC parallelis

Learned Scheduling
The scheduling problem A learned model

v When to load and process a subgraph? Capre(Fi) =) hap(Ti(u))
v How to allocate resources to maximize u€F;
two-level parallelism? v Where Zi(v) takes into account the average in/out-degree of all

vertices and the number of u’s mirror across all fragments.
v Collecting training data from log.

Scheduling strategy

argmin max {t; +Ca(F;,pi)} _ _
S i€[0,n) v Tentative resource allocation: allocates resources based

v ltis in NPC. on the subgraph size and the memory size.
v Greedy subgraph processing: Scheduler keeps track of a
list of pending subgraphs, sorted by Ca(Fi; pi).

Other Optimizations

StateManager: a light weight state machine for optimization

Subgraphs states management e Shortcut (B) Star a new round w wacker fag T |

v Targets: Manage subgraphs, determine if the Y rmensy (®) Complete computation
program is finished, and optimize I/O. S el e =@""gi“g]

v At any point of time, £ is in one of the five _— ot S
states: Active, PendingEval, UnderEval, "= "feaa - Coade compiaton. . 1eClBtl {0 Compll
Converged, Discharging, Active [#—=—————] Converged |+—————

v In-memory: PendingEval, UnderEval, Discharging reckerfeg n'™ e ®

v On-disk: Active, Converged. A state machine

I/O optimization v ShortCut B: I'iis set to PendingEval

v ShortCut A: If £i requires no further directly, such that it starts the new round
processing, we can skip handling subgraph without going through the disk. (Avoid Read)
Fi in the round. (Avoid both Read&Write) v ShortCut C: IncEval(fi) completes with no

changes, £'i skips Discharging and is set to
Converged directly. (Avoid Write)

Experimental setting

Name Type |V| |E| MaxDegree Raw Data Out_of_co re
roadNetCA [1] d network 2M 2.7M 23 83MB . .
skitter [42] nels:orl?iovggfogy 1.6M 11M 35455 142MB v GrldGraph[ATC,15],GraphCh|[OSD|,1 2],
twitter [8,40] social network 41.6M 1.5B 3M 25GB XStream[SIGOPS,1 3]
friendster [5] social network 65.6M 1.8B 5124 30.14GB - &
web-sk [55] Web 50M 1.9B 8.5M 32GB Distributed
clueWeb [55] 178 7.9B 137GB v GraphScope[VLDB’21],Gluon[PLDI’18]

Testbed Applications

v Ubuntu Server 20.04 LTS v WCC

v Intel Core i9-7900X CPU @3.30GHz v PageRank

v 13.75MB LLC v SSSP

v 10 cores (20 hyper threads) v BFS

v 64GB of DDR4-2666 memory v Random Walk

v 1TB WD blue SATA SSD, whose read v Simulation
throughput is 560MB/s.

Result

Experimental results overview

Memory #Partitions SSSP WCC PR
Data N
Budget (PR/Others} = : : - : : - L
MiniGraph = GraphChi GridGraph XStream = MiniGraph | GraphChi GridGraph XStream = MiniGraph GraphChi GridGraph XStream
roadNetCA 100% 1/1 8.66 22.5(2.6X) 10.55(1.2X) 2 (0.2X) 2.76 17.2(6X) 1822 (6.6X) 2.93(1.1X) 0.25 0.91(3.5X) 0.71 (2.7X) 2.34 (2.6X)
skitter 100% 1/1 0.53 1.64 (78.5X) 0.35 (0.67X) 0.69 (1.3X) 0.16 1343 (1152X) 0.33(2.1X) 059(3.9X) 027 | 1.27(4.7X) 0.82(3.0X) 0.98 (3.6X)
twitter 50% (12.5GB) 4/10 150.8 802.8(5.3X) 195.4(1.29%) 2365(15.6X) 159.5 504.8(3.7X) 186(1.2X) 1983(12.4X) 224.2 | 782.1(3.5X) 371.3(1.7X) 2183(9.7X)
friendster 50% (15.07GB) 4/10 201.8 535(2.7X) 293.1(1.45X) 3061(15.2X) 1718 1636(9.5X) 204.7(1.2X) 2037(11.8X] 190.104 | 450.7(1.9X) 485.3(1.9X) 2685(11.3X)
web-sk 50% (16GB) 4/10 3264 | 1140(3.5X) 917.9(2.8X) 9437 (28.9X 172 620.1(3.6X) 704.6(4.1X) 4056(23.5%) 248.3 | 2288(9.2X) 395(1.6X) 2903(11.7X)
cluewep 47% (64GB) 4/10 2514 / 11534 (4.59X) / 2742 / 11665 (4.25X) / 2022 / 3803(2.1X) /
10% (13.7GB) 20/50 5871 / / / 7486 / / / 2979 / / /

Findings
v MiniGraph consistently outperforms the prior single-machine systems under all out-of-core workloads. It
is up to 4.6x, 9.5x and 28.9x faster than GridGraph, GraphChi and XStream, respectively.

Result: Runtime statistics and comparison over resource usage

Runtime statistics for SSSP, WCC and PR CPU & I/0 utilization: WCC over clueWeb

W®
Dataset Metric SSSP wee PR
MiniGraph' GridGrap! MiniGraph GridGrapl MiniGraph GridGraph §
Supersteps 8 32 6 21 8 10 o °
Disk Read (GB) 78 115.1 74 135 107 160 o
. Shortcut I/O (GB) -12 N/A -12 N/A -10.4 N/A 2]
friendster =\ o CPUUSL | 33.74% | 445% | 482% | 683% | 68.46% | 62.38% o O
I/0-Compute Corr 0.095 -0.113 0.163 -0.202 0.185 -0.156 o ‘\QQ
Cache Hits 45.33% 9.59% 48.25% | 12.04% 34.8% 36.2% 3
Supersteps 10 63 9 120 15 20 § N
Disk Read (GB) 112.5 232 81.9 367 87 232
web-sk Shortcut I/O (GB) -30.9 N/A -6.1 N/A -20.9 N/A
Avg. CPU Util. 15.76% 5.83% 25.04% 5.16% 42% 42%
I/0-Compute Corr 0.008 0.003 0.013 0.009 0.082 -0.039 N
Cache Hits 50.89% 6.37% 37.42% 11.63% 50.22% 46.04%

Findings

v Under BSP, MiniGraph requires only a fraction of supersteps (<29%) and disk read traffic (<53.3%) of

GridGraph for SSSP and WCC.

v MiniGraph improves the CPU utilization of GridGraph, the best-performing baseline, by up to 41.4%.

v MiniGraph’s shortcut optimization effectively reduces I/O cost, especially

CPU
~ Bandwidth

|
§I/O-comé)ute Corr.
i :-0.04

MiniGraph

0

zn.. r“iv«w
I/O-comfute Corr.
:-0.22 :

il et

6000 800(

&q[iudG'ra&h

4000
Time (s)

2000

Result: Runtime statistics and comparison over resource usage

—e— MiniGraph

——— GraphScope

-

Findings

v MiniGraph works better than Gluon, a distributed graph analysis system, with 12 machines on a graph
simulation task, and saves the monetary cost of multi-machine systems from 3.0x to 13.9x.

Gluon

Monetary Cost (x)

MiniGraph VS distributed systems

__ a9

% -r"w

—e @ L 4 —4
2 4 6 8 10 12
Nodes

Sim

10 12

6 8
Nodes

Conclusion

MiniGraph is an out-of-core system for graph computations. It is the first single-machine
system that extends graph-centric (GC) model from multiple machines to multiple cores.

It shows that GC speeds up beyond-neighborhood and reduces 1/O.

0 https://github.com/SICS-Fundamental-Research-Center/MiniGraph

Thanks!

I am looking for postdoctoral position. Please contact me if you are interested.
Email: zhuxk@buaa.edu.cn

Result: other results Il

Scalability of MiniGraph

—e— MiniGraph @ Seq —<— NoShort —— GridGraph —-+~- GraphChi —4— GraphScope -e- Gluon

T \ "
o A friendster NS 01 n=4 A B wce
— m . friendster-.. —< n-=16 v :
~ ~ ~ Q o ~ QO
o AQQQ \,0\\ . o CLQQ
S £
[=

Disk Read (GB)
2)
% %
.\.
\ \.

0.4 0.6 0.8 1.0

Scale Factor
(a) Varying |G|: PR. (b) Varying m: WCC. (c) Varying p;: PR. (d) Varying n: friendster.

Accuracy and effectiveness of cost model formulations

Cost model C# Model (a) Model (b)
Normalized loss over Stest 0.16 0.22 0.22
Normalized loss over St’ est 0.40 0.50 0.43

Improvement web-sk (%) 39.0% 27.2% 27.3%
Improvement clueWeb (%) 30.0% 16.5% 17.1%

