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Graphs: Everything is Naturally Connected
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We use Graphs everyday and everywhere.
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Applications on Graph Data
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What is graph computing and why is it important? l
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Shared memory
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To compute connected components of a graph with billions of vertices and trillions
of edges, Yahoo! employs a 1000-node cluster with 12000 processors
and 128 TB of aggregated memory.

Why out-of-core graph system?



Existing Solutions

Shared memory

v Single-node and in-memory Limited capacity to big graphs
v Ligraiprorrr13], Galois[sosp13]

Distributed
v Multi-node and in-memory Irreqular structure, scalability problem
v GraphScope[vLbe21, SIGMOD"17], Beyond the reach of small companies

Pregelisiamop10], GluonpLpr1s;,

Out-of-core
v Single-node and disk-based It is feasible due to promise
v GraphChijosbriz2), GridGraphiatcis, performance of SSD, NVMe el al.
MosalC[EuroSys'17] I/0O will become the bottleneck

How to improve the performance of out-of-core system?



A review of out-of-core system
Basic idea

If fragments have updates Read
Cache
Partitioning Read fragments Write updates { ] i
Graph 9 p Memory Disk
Let fragments can fit into Converge Write
the memory.

The-state-of-art: GridGraph

v Vertex-centric model and BSP model.
v Read from source vertices, Write to destination vertices.
v 2-level hierarchy partitioning and skip block with no active edges.
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Block(2, 1)
Initialize Stream Block (1, 1) Stream Block (2, 1) Stream Block (1, 2) Stream Block (2, 2) Iteration 1 finishes

(a) An example graph (b) Grid representation

2D-partitioning Workflow

Why out-of-core graph system?



A review of out-of-core system

Findings after Profiling GridGraph

v Setting:

v WCC task.

¥ A machine powered with 20 cores 8 — [om J.“’
and SSD. g O 2000 4000 6000 s

v A graph with over 50 Millions edges
(50% data out of memory). (b) Active vertics & IO

v Findings: 2|

v The rate at which a task is limited by
the speed of the I/0. 2

v Unnecessary I/0O caused by less and R e
scattered active vertices. check point

If there is opportunity for improving the SOTA?



Graph-centric (GC) vs Vertex-centric (VC)

Superstep 1 #0ps: 32 Superstep2 #Ops 28 Superstep 3 #Ops 20 Superstep 4  #Ops: 8 Superstep 5

\" ERERE

b) VC execution in 5 supersteps.

Superstep 1: PEval #Ops: 16 Superstep 2: IncEval #Ops: 12 Superstep 3: IncEval #Ops: 4
0 O
OF
= I
® O=<D
Input graph G \0 10

(c) GC execution in 3 supersteps.

v VC takes many computations steps to propagate a piece of information from
a source to a destination, even if both appear in the same partition.
v GC allows information to flow freely inside a partition.

How to leverage GC?



Challenges & Opportunities

Parallelism

v GC exploits data-partitioned parallelism only. With limited memory capacity, it
would result in either underutilization of the CPU or graph fragmentation.

Out-of-core computation

v A out-of-core system has to resort to secondary storage. Managing the in-
memory and the on-disk parts of an input graph is crucial to performance.

Require solutions.



MiniGraph Architecture

The characters of MiniGraph

. . . APls : EMap : ! VMap : PEval IncEval Assemble
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MiniGraph Architecture

The characters of MiniGraph

. . . APIs : EMap g VMap PEval IncEval Assemble
v A pipelined architecture to overlap /0 and ‘EY—m—m——set b
) | StateManaqer | | Scheduler |
CPU operations. & o Lo o S — :
. ) B O G .

- Loader continuous reads a memory R S S S e

[}
\ >
N V n Discharge}'IJ

™ Thread Pool

Inbound Outbound i i
Evaluator

Queue Queue

absent subgraphs from disk.
- Evaluator is responsible for execution of
an application. >—— Writer  Evictor
: : M S
« Discharger writes the data back to the s vz ..............
disk.

___________________________________________________________________________

subgraph subgraph subgraph ;
“token E](pending) EJ(updating) -(updated /o




MiniGraph Architecture
The characters of MiniGraph
PIE model

v A pipelined architecture to overlap I/0 and
CPU operations.

v A hybrid parallel model to support both the QFo) T - Q(Fn-1) @ PEval
data-partitioned parallelism of GC and the \*|7 MessageStore ‘Jf’/

. . ()
operation-level parallelism of VC. E Q(Fy & Mp) Q(Fp_1 ® My_1)
\»E MessageStore j*'/ @ IncEval
&~ T,
Q(Fo @ My) Q(Fn—1® My,_1)

| 5 5
TN 0T Gaeseni

Enrich inter-G. GC parallelism with intra-G. VC parallelis




MiniGraph Architecture

PEval + EMap/VVMap (VC)

HashMin algorithm.
* Init: each vertex is assigned a distinct numeric label
v A pipelined architecture to overlap I/0 and * Run: each vertex collects the labels from its
CPU operations neighbors and update its own label with minimum
. » Border vertices: with an edge to another fragment.

The characters of MiniGraph

v A hybrid parallel model to support both the Eg;“;ﬁiﬁii;"

data-partitioned parallelism of GC and the IncEval + EMap/\VMap (VC) |

operation-level parallelism of VC. |

Incremental HashMin algorithm.
* Run: each vertex collects the labels from its ;| M; from
neighbors and update its own label

« Messages M.: changed for border vertices of F. \

Assemble

The union of all partial results.

Enrich inter-G. GC parallelism with intra-G. VC parallelis
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PEval + EMap/VVMap (VC)

HashMin algorithm.
* Init: each vertex is assigned a distinct numeric label

v A pipelined architecture to overlap 1/0 and * Run: each vertex collects the labels from its
neighbors and update its own label with minimum

The characters of MiniGraph

CPU operations. » Border vertices: with an edge to another fragment.

v A hybrid parallel model to support both the Push updaies to

- i border vertices.
data-partitioned parallelism of GC and the IncEval + EMap/\VMap (VC) |
operation-level parallelism of VC. |
Incremental HashMin algorithm.
_ PR ) * Run: each vertex collects the labels from its 1| M, from
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MiniGraph Architecture

PEval + EMap/VVMap (VC)

HashMin algorithm.
* Init: each vertex is assigned a distinct numeric label

v A pipelined architecture to overlap 1/0 and * Run: each vertex collects the labels from its
neighbors and update its own label with minimum

The characters of MiniGraph

CPU operations. » Border vertices: with an edge to another fragment.

v A hybrid parallel model to support both the iy
data-partitioned parallelism of GC and the IncEval + EMap/\VMap (VC) |
operation-level parallelism of VC. |

Incremental HashMin algorithm.
* Run: each vertex collects the labels from its ;| M; from

Y TWO'Ie‘_’eI p?ral!ehsm: Inter'SUbgraph neighbors and update its own label
parallelism via high-level GC abstraction, and |. Messages M:: changed for border vertices of . \
intra-subgraph parallelism for low-level VC
operations. Assemble
v A learned sgheqluler: to further improve R utnddsatt e
hardware utilization.

Enrich inter-G. GC parallelism with intra-G. VC parallelis




Learned Scheduling
The scheduling problem A learned model

v When to load and process a subgraph? Capre(Fi) = ) hap(Ti(u))
v How to allocate resources to maximize u€F;
two-level parallelism? v Where Zi(v) takes into account the average in/out-degree of all

vertices and the number of u’s mirror across all fragments.
v Collecting training data from log.

Scheduling strategy

argmin max {t; +Ca(F;,pi)} _ _
S  i€[0,n) v Tentative resource allocation: allocates resources based

v ltis in NPC. on the subgraph size and the memory size.
v Greedy subgraph processing: Scheduler keeps track of a
list of pending subgraphs, sorted by Ca(Fi; pi).




Other Optimizations

StateManager: a light weight state machine for optimization

Subgraphs states management e Shortcut (B) Star a new round w wacker fag T |

v Targets: Manage subgraphs, determine if the Y rmensy (®) Complete computation
program is finished, and optimize I/O. S el e =@""gi“g]

v At any point of time, £ is in one of the five _— ot S
states: Active, PendingEval, UnderEval, "= "feaa - Coade compiaton. . 1eClBtl {0 Compll
Converged, Discharging, Active  [#—=—————] Converged |+—————

v In-memory: PendingEval, UnderEval, Discharging  reckerfeg n'™ e ®

v On-disk: Active, Converged. A state machine

I/O optimization v ShortCut B: I'iis set to PendingEval

v ShortCut A: If £i requires no further directly, such that it starts the new round
processing, we can skip handling subgraph without going through the disk. (Avoid Read)
Fi in the round. (Avoid both Read&Write) v ShortCut C: IncEval(fi) completes with no

changes, £'i skips Discharging and is set to
Converged directly. (Avoid Write)



Experimental setting

Name Type |V| |E| MaxDegree Raw Data Out_of_co re
roadNetCA [1] d network 2M 2.7M 23 83MB . .
skitter [42] nels:orl?iovggfogy 1.6M 11M 35455 142MB v GrldGraph[ATC,15],GraphCh|[OSD|,1 2],
twitter [8,40] social network 41.6M 1.5B 3M 25GB XStream[SIGOPS,1 3]
friendster [5] social network 65.6M 1.8B 5124 30.14GB - &
web-sk [55] Web 50M 1.9B  8.5M 32GB Distributed
clueWeb [55] 178 7.9B 137GB v GraphScope[VLDB’21],Gluon[PLDI’18]

Testbed Applications

v Ubuntu Server 20.04 LTS v WCC

v Intel Core i9-7900X CPU @3.30GHz v PageRank

v 13.75MB LLC v SSSP

v 10 cores (20 hyper threads) v BFS

v 64GB of DDR4-2666 memory v Random Walk

v 1TB WD blue SATA SSD, whose read v Simulation
throughput is 560MB/s.



Result

Experimental results overview

Memory  #Partitions SSSP WCC PR
Data N
Budget  (PR/Others} = : : - : : - L
MiniGraph = GraphChi  GridGraph  XStream = MiniGraph | GraphChi  GridGraph  XStream = MiniGraph GraphChi GridGraph XStream
roadNetCA 100% 1/1 8.66 22.5(2.6X) 10.55(1.2X) 2 (0.2X) 2.76 17.2(6X) 1822 (6.6X) 2.93(1.1X) 0.25 0.91(3.5X) 0.71 (2.7X) 2.34 (2.6X)
skitter 100% 1/1 0.53 1.64 (78.5X) 0.35 (0.67X) 0.69 (1.3X) 0.16 1343 (1152X) 0.33(2.1X) 059(3.9X) 027 | 1.27(4.7X) 0.82(3.0X) 0.98 (3.6X)
twitter 50% (12.5GB) 4/10 150.8  802.8(5.3X) 195.4(1.29%) 2365(15.6X)  159.5 504.8(3.7X)  186(1.2X) 1983(12.4X)  224.2 | 782.1(3.5X) 371.3(1.7X) 2183(9.7X)
friendster 50% (15.07GB) 4/10 201.8 535(2.7X)  293.1(1.45X) 3061(15.2X) 1718 1636(9.5X)  204.7(1.2X) 2037(11.8X] 190.104 | 450.7(1.9X) 485.3(1.9X) 2685(11.3X)
web-sk  50% (16GB) 4/10 3264 | 1140(3.5X) 917.9(2.8X) 9437 (28.9X 172 620.1(3.6X)  704.6(4.1X) 4056(23.5%)  248.3 | 2288(9.2X) 395(1.6X) 2903(11.7X)
cluewep  47% (64GB) 4/10 2514 / 11534 (4.59X) / 2742 / 11665 (4.25X) / 2022 / 3803(2.1X) /
10% (13.7GB) 20/50 5871 / / / 7486 / / / 2979 / / /

Findings
v MiniGraph consistently outperforms the prior single-machine systems under all out-of-core workloads. It
is up to 4.6x, 9.5x and 28.9x faster than GridGraph, GraphChi and XStream, respectively.



Result: Runtime statistics and comparison over resource usage

Runtime statistics for SSSP, WCC and PR CPU & I/0 utilization: WCC over clueWeb

W®
Dataset Metric SSSP wee PR
MiniGraph' GridGrap! MiniGraph GridGrapl MiniGraph GridGraph §
# Supersteps 8 32 6 21 8 10 o °
Disk Read (GB) 78 115.1 74 135 107 160 o
. Shortcut I/O (GB) -12 N/A -12 N/A -10.4 N/A 2]
friendster =\ o CPUUSL | 33.74% | 445% | 482% | 683% | 68.46% | 62.38% o O
I/0-Compute Corr 0.095 -0.113 0.163 -0.202 0.185 -0.156 o ‘\QQ
Cache Hits 45.33% 9.59% 48.25% | 12.04% 34.8% 36.2% 3
# Supersteps 10 63 9 120 15 20 § N
Disk Read (GB) 112.5 232 81.9 367 87 232
web-sk Shortcut I/O (GB) -30.9 N/A -6.1 N/A -20.9 N/A
Avg. CPU Util. 15.76% 5.83% 25.04% 5.16% 42% 42%
I/0-Compute Corr 0.008 0.003 0.013 0.009 0.082 -0.039 N
Cache Hits 50.89% 6.37% 37.42% 11.63% 50.22% 46.04%

Findings

v Under BSP, MiniGraph requires only a fraction of supersteps (<29%) and disk read traffic (<53.3%) of

GridGraph for SSSP and WCC.

v MiniGraph improves the CPU utilization of GridGraph, the best-performing baseline, by up to 41.4%.

v MiniGraph’s shortcut optimization effectively reduces I/O cost, especially

CPU
~ Bandwidth

|
§I/O-comé)ute Corr.
i :-0.04

MiniGraph

0

zn.. r“iv«w
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:-0.22 :

il et
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Time (s)
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Result: Runtime statistics and comparison over resource usage

—e— MiniGraph

——— GraphScope

-

Findings

v MiniGraph works better than Gluon, a distributed graph analysis system, with 12 machines on a graph
simulation task, and saves the monetary cost of multi-machine systems from 3.0x to 13.9x.

Gluon

Monetary Cost (x)

MiniGraph VS distributed systems

__ a9

% -r"w

—e @ L 4 —4
2 4 6 8 10 12
# Nodes

Sim

10 12

6 8
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Conclusion

MiniGraph is an out-of-core system for graph computations. It is the first single-machine
system that extends graph-centric (GC) model from multiple machines to multiple cores.

It shows that GC speeds up beyond-neighborhood and reduces 1/O.

0 https://github.com/SICS-Fundamental-Research-Center/MiniGraph



Thanks!

I am looking for postdoctoral position. Please contact me if you are interested.
Email: zhuxk@buaa.edu.cn



Result: other results Il

Scalability of MiniGraph

—e— MiniGraph @ Seq —<— NoShort —— GridGraph —-+~- GraphChi —4— GraphScope -e- Gluon
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Scale Factor
(a) Varying |G|: PR. (b) Varying m: WCC. (c) Varying p;: PR. (d) Varying n: friendster.

Accuracy and effectiveness of cost model formulations

Cost model C# Model (a) Model (b)
Normalized loss over Stest 0.16 0.22 0.22
Normalized loss over St’ est 0.40 0.50 0.43

Improvement web-sk (%) 39.0% 27.2% 27.3%
Improvement clueWeb (%)  30.0% 16.5% 17.1%




