

MiniGraph: Querying Big Graphs with a Single Machine

Xiaoke Zhu, Yang Liu, Shuhao Liu, and Wenfei Fan

Road networks

Applications on Graph Data

Shared memory

- √ Single-node and in-memory
- ✓ Ligra[PPoPP'13], Galois[SOSP'13]

Limited capacity to big graphs

Shared memory X

- √ Single-node and in-memory
- ✓ Ligra[PPoPP'13], Galois[SOSP'13]

Limited capacity to big graphs

Distributed

- ✓ Multi-node and in-memory
- ✓ GraphScope[VLDB'21, SIGMOD'17], Pregel[SIGMOD'10],Gluon[PLDI'18]

Irregular structure, scalability problem Beyond the reach of small companies

Shared memory X

- ✓ Single-node and in-memory
- ✓ Ligra[PPoPP'13], Galois[SOSP'13]

Limited capacity to big graphs

Distributed

- ✓ Multi-node and in-memory
- √ GraphScope[VLDB'21, SIGMOD'17], Pregel[SIGMOD'10], Gluon[PLDI'18]

Irregular structure, scalability problem

Beyond the reach of small companies

To compute connected components of a graph with billions of vertices and trillions of edges, Yahoo! employs a 1000-node cluster with 12000 processors and 128 TB of aggregated memory.

Shared memory

- √ Single-node and in-memory
- ✓ Ligra[PPoPP'13], Galois[SOSP'13]

Limited capacity to big graphs

Distributed

- ✓ Multi-node and in-memory
- √ GraphScope[VLDB'21, SIGMOD'17],
 Pregel[SIGMOD'10], Gluon[PLDI'18],

Irregular structure, scalability problem Beyond the reach of small companies

Out-of-core

The scope of this work

- √ Single-node and disk-based
- √ GraphChi[OSDI'12], GridGraph[ATC'15], Mosaic[EuroSys'17]

It is feasible due to promise performance of SSD, NVMe el al. I/O will become the bottleneck

A review of out-of-core system

Basic idea

The-state-of-art: GridGraph

- ✓ Vertex-centric model and BSP model.
- ✓ Read from source vertices, Write to destination vertices.
- √ 2-level hierarchy partitioning and skip block with no active edges.

2D-partitioning Workflow

A review of out-of-core system

Findings after Profiling GridGraph

- √ Setting:
- ✓ WCC task.
- ✓ A machine powered with 20 cores and SSD.
- ✓ A graph with over 50 Millions edges (50% data out of memory).
- **√** Findings:
- ✓ The rate at which a task is limited by the speed of the I/O.
- Unnecessary I/O caused by less and scattered active vertices.

Motivation

Graph-centric (GC) vs Vertex-centric (VC)

(b) VC execution in 5 supersteps.

(c) GC execution in 3 supersteps.

- ✓ VC takes many computations steps to propagate a piece of information from a <u>source</u> to a <u>destination</u>, even if both appear in the same partition.
- ✓ GC allows information to flow freely inside a partition.

Challenges & Opportunities

Parallelism

✓ GC exploits data-partitioned parallelism only. With limited memory capacity, it would result in either underutilization of the CPU or graph fragmentation.

Out-of-core computation

✓ A out-of-core system has to resort to secondary storage. Managing the inmemory and the on-disk parts of an input graph is crucial to performance.

The characters of MiniGraph

✓ A pipelined architecture to overlap I/O and CPU operations.

The characters of MiniGraph

- ✓ A pipelined architecture to overlap I/O and CPU operations.
 - Loader continuous reads a memory absent subgraphs from disk.
 - Evaluator is responsible for execution of an application.
 - Discharger writes the data back to the disk.

The characters of MiniGraph

- ✓ A pipelined architecture to overlap I/O and CPU operations.
- ✓ A hybrid parallel model to support both the data-partitioned parallelism of GC and the operation-level parallelism of VC.

The characters of MiniGraph

- ✓ A pipelined architecture to overlap I/O and CPU operations.
- ✓ A hybrid parallel model to support both the data-partitioned parallelism of GC and the operation-level parallelism of VC.

PEval + EMap/VMap (VC) HashMin algorithm. Init: each vertex is assigned a distinct numeric label Run: each vertex collects the labels from its neighbors and update its own label with minimum Border vertices: with an edge to another fragment. Push updates to border vertices. IncEval + EMap/VMap (VC) Incremental HashMin algorithm. Run: each vertex collects the labels from its pull M_i from neighbors and update its own label • Messages M_i : changed for border vertices of F_i . Assemble The union of all partial results.

The characters of MiniGraph

- ✓ A pipelined architecture to overlap I/O and CPU operations.
- ✓ A hybrid parallel model to support both the data-partitioned parallelism of GC and the operation-level parallelism of VC.
- ✓ Two-level parallelism: inter-subgraph parallelism via high-level GC abstraction, and intra-subgraph parallelism for low-level VC operations.

PEval + EMap/VMap (VC)

HashMin algorithm.

- Init: each vertex is assigned a distinct numeric label
- Run: each vertex collects the labels from its neighbors and update its own label with minimum
- Border vertices: with an edge to another fragment.

Push updates to border vertices.

pull M_i from

IncEval + EMap/VMap (VC)

Incremental HashMin algorithm.

- Run: each vertex collects the labels from its neighbors and update its own label
- Messages M_i : changed for border vertices of F_i .

Assemble

The union of all partial results.

The characters of MiniGraph

- ✓ A pipelined architecture to overlap I/O and CPU operations.
- ✓ A hybrid parallel model to support both the data-partitioned parallelism of GC and the operation-level parallelism of VC.
- √ Two-level parallelism: inter-subgraph parallelism via high-level GC abstraction, and intra-subgraph parallelism for low-level VC operations.
- ✓ A learned scheduler: to further improve hardware utilization.

PEval + EMap/VMap (VC)

HashMin algorithm.

- Init: each vertex is assigned a distinct numeric label
- Run: each vertex collects the labels from its neighbors and update its own label with minimum
- Border vertices: with an edge to another fragment.

Push updates to border vertices.

pull M_i from

IncEval + EMap/VMap (VC)

Incremental HashMin algorithm.

- Run: each vertex collects the labels from its neighbors and update its own label
- Messages M_i : changed for border vertices of F_i .

Assemble

The union of all partial results.

Learned Scheduling

The scheduling problem

- ✓ When to load and process a subgraph?
- ✓ How to allocate resources to maximize two-level parallelism?

Goal

$$\underset{\mathcal{S}}{\operatorname{arg\,min}} \max_{i \in [0,n)} \{ t_i + \mathcal{C}_{\mathcal{A}}(F_i, p_i) \}$$

✓ It is in NPC.

A learned model

$$C_{\mathcal{A}_{PIE}}(F_i) = \sum_{u \in F_i} h_{\mathcal{A}_{PIE}}(\overline{x_i}(u))$$

- ✓ Where $\overline{x_i}(u)$ takes into account the **average in/out-degree** of all vertices and the **number of** u's **mirror** across all fragments.
- ✓ Collecting training data from log.

Scheduling strategy

- ✓ Tentative resource allocation: allocates resources based on the subgraph size and the memory size.
- ✓ Greedy subgraph processing: Scheduler keeps track of a list of pending subgraphs, sorted by $\mathcal{C}_{\mathcal{A}}(F_i, \hat{p}_i)$.

Other Optimizations

StateManager: a light weight state machine for optimization

Subgraphs states management

- ✓ Targets: Manage subgraphs, determine if the program is finished, and optimize I/O.
- ✓ At any point of time, F_i is in one of the five states: *Active*, *PendingEval*, *UnderEval*, *Converged*, *Discharging*.
- ✓ In-memory: PendingEval, UnderEval, Discharging
- ✓ On-disk: Active, Converged.

I/O optimization

✓ ShortCut A: If F_i requires no further processing, we can skip handling subgraph F_i in the round. (Avoid both Read&Write)

A state machine

- ✓ ShortCut B: F_i is set to *PendingEval* directly, such that it starts the new round without going through the disk. (Avoid Read)
- ✓ ShortCut C: IncEval(F_i) completes with no changes, F_i skips *Discharging* and is set to *Converged* directly. (Avoid Write)

Experimental setting

Datasets

Name	Туре	V	E	MaxDegree	Raw Data
roadNetCA[1] skitter[42]	road network network topology	2M 1.6M		23 35455	83MB 142MB
twitter [8, 40] friendster [5] web-sk [55]	social network social network Web		1.8B	3M 5124 8.5M	25GB 30.14GB 32GB
clueWeb [55]	Web	1.7B	7.9B	6.4M	137GB

Testbed

- ✓ Ubuntu Server 20.04 LTS
- ✓ Intel Core i9-7900X CPU @3.30GHz
- **√** 13.75MB LLC
- √ 10 cores (20 hyper threads)
- √ 64GB of DDR4-2666 memory
- ✓ 1TB WD blue SATA SSD, whose read throughput is 560MB/s.

Baseline

Out-of-core

√ GridGraph[ATC'15], GraphChi[OSDI'12], XStream[SIGOPS'13]

Distributed

√ GraphScope[VLDB'21],Gluon[PLDI'18]

Applications

- **√** WCC
- ✓ PageRank
- **√** SSSP
- **√** BFS
- √ Random Walk
- **√** Simulation

Result

Experimental results overview

Data	Memory #Partition					WCC			PR					
	Budget	(PR/Others)	MiniGraph	GraphChi	GridGraph	XStream	MiniGraph	GraphChi	GridGraph	XStream	MiniGraph	GraphChi	GridGraph	XStream
roadNetCA skitter	100% 100%	1/1 1/1	8.66 0.53	22.5 (2.6×) 1.64 (78.5×)	10.55 (1.2×) 0.35 (0.67 ×)	2 (0.2×) 0.69 (1.3×)	2.76 0.16	17.2 (6×) 3.43 (115.2×)	18.22 (6.6×) 0.33 (2.1×)	2.93 (1.1×) 0.59 (3.9×)		, ,	, ,	2.34 (2.6×) 0.98 (3.6×)
twitter friendster web-sk	50% (12.5GB) 50% (15.07GB) 50% (16GB)	4/10 4/10 4/10	150.8 201.8 326.4	802.8(5.3×) 535(2.7×) 1140(3.5×)	195.4(1.29×) 293.1(1.45×) 917.9(2.8×)	3061(15.2×)		594.8(3.7×) 1636(9.5×) 620.1(3.6×)	,	1983(12.4×) 2037(11.8×) 4056(23.5×)	190.104	450.7(1.9×)	485.3(1.9×)	2183(9.7×) 2685(11.3×) 2903(11.7×)
clueWeb	47% (64GB) 10% (13.7GB)	4/10 20/50	2514 5871	/	11534 (4.59×) /	/ /	2742 7486	/	11665 (4.25×) /	/ /	2022 2979	/	3803(2.1×) /	/

Findings

✓ MiniGraph consistently outperforms the prior single-machine systems under all out-of-core workloads. It is up to 4.6×, 9.5× and 28.9× faster than GridGraph, GraphChi and XStream, respectively.

Result: Runtime statistics and comparison over resource usage

Runtime statistics for SSSP, WCC and PR

CPU & I/O utilization: WCC over clueWeb

Dataset	Metric	SS	SP	W	cc	PR		
		MiniGraph	GridGrapl	MiniGraph	GridGrapl	MiniGraph	GridGrapl	
	# Supersteps	8	32	6	21	8	10	
friendster	Disk Read (GB)	78	115.1	74	135	107	160	
	Shortcut I/O (GB)	-12	N/A	-12	N/A	-10.4	N/A	
	Avg. CPU Util.	33.74%	4.45%	48.2%	6.83%	68.46%	62.38%	
	I/O-Compute Corr	0.095	-0.113	0.163	-0.202	0.185	-0.156	
	Cache Hits	45.33%	9.59%	48.25%	12.04%	34.8%	36.2%	
	# Supersteps	10	63	9	120	15	20	
web-sk	Disk Read (GB)	112.5	232	81.9	367	87	232	
	Shortcut I/O (GB)	-30.9	N/A	-6.1	N/A	-20.9	N/A	
	Avg. CPU Util.	15.76%	5.83%	25.04%	5.16%	42%	42%	
	I/O-Compute Corr	0.008	0.003	0.013	0.009	0.082	-0.039	
	Cache Hits	50.89%	6.37%	37.42%	11.63%	50.22%	46.04%	

Findings

- ✓ Under BSP, MiniGraph requires only a fraction of supersteps (<29%) and disk read traffic (<53.3%) of GridGraph for SSSP and WCC.
- ✓ MiniGraph improves the CPU utilization of GridGraph, the best-performing baseline, by up to 41.4%.
- ✓ MiniGraph's shortcut optimization effectively reduces I/O cost, especially

Result: Runtime statistics and comparison over resource usage

MiniGraph VS distributed systems

Findings

✓ MiniGraph works better than Gluon, a distributed graph analysis system, with 12 machines on a graph simulation task, and saves the monetary cost of multi-machine systems from 3.0× to 13.9×.

Conclusion

MiniGraph is an out-of-core system for graph computations. It is the first single-machine system that extends graph-centric (GC) model from multiple machines to multiple cores.

It shows that GC speeds up beyond-neighborhood and reduces I/O.

https://github.com/SICS-Fundamental-Research-Center/MiniGraph

Thanks!

I am looking for postdoctoral position. Please contact me if you are interested. Email: zhuxk@buaa.edu.cn

Result: other results II

Scalability of MiniGraph

Accuracy and effectiveness of cost model formulations

Cost model	$C_{\mathcal{A}}$ 1	Model (a)	Model (b)
Normalized loss over S_{test}	0.16	0.22	0.22
Normalized loss over S'_{test}	0.40	0.50	0.43
Improvement web-sk (%) Improvement clueWeb (%)	39.0%	27.2%	27.3%
	30.0%	16.5%	17.1%