
Deep and Collective Entity Resolution in Parallel
Ting Deng1 Wenfei Fan1,2,3 Ping Lu1 Xiaomeng Luo1 Xiaoke Zhu1 Wanhe An1

SKLSDE, Beihang University1 University of Edinburgh2 Shenzhen Institute of Computing Sciences3

wenfei@inf.ed.ac.uk, {dengting@act., luping@, luoxm@act., zhuxk@, anwh@act.}buaa.edu.cn

Abstract—This paper studies deep and collective entity resolu-
tion (ER). As opposed to a single pass of pairwise comparison of
tuples in a single table, deep ER recursively identifies tuples that
refer to the same entity by making use of matches in the previous
rounds, and collective ER determines matches by correlating
information across multiple tables. We propose a fixpoint model
for deep and collective ER, by chasing with logic rules that
are collectively defined across multiple relations and may embed
machine learning classifiers for ER as predicates. While powerful,
we show that deep and collective ER is intractable. To scale
with large datasets, we develop a data partitioning strategy
and a parallel algorithm underlying the fixpoint model, which
guarantee to reduce runtime when more processors are used.
Using real-life data, we experimentally verify that the approach
improves the ER accuracy and is parallelly scalable.

I. INTRODUCTION

Entity resolution (ER) has been a longstanding challenge.

Also known as record matching, record linkage and duplicate

detection, ER is to identify whether two tuples in a dataset

refer to the same real-world entity. There has been a host of

work on ER, based on either logic rules (e.g., [30], [16], [10])

or machine learning (ML) models (e.g., [50], [55], [9]).

ER is conceptually conducted on a single relation via a

single pass of pairwise comparison of the tuples in the table,

possibly with blocking [66], [49] and windowing [39] to speed

up the process. However, there is still room to improve its

accuracy. (1) We can often identify new matches by making

use of matches deduced earlier. This suggests that we conduct

ER recursively, referred to as deep ER, instead of inspecting

tuple pairs only once. (2) While it has long been recognized

that accurate ER needs to collectively correlate information

across multiple tables [17], no data quality rules are in place

to express collective ER, and even the complexity of collective

ER is not yet settled. In particular, blocking and windowing no

longer work for collective ER since they target a table of ho-

mogeneous tuples, while collective ER works on multiple (het-

erogeneous) tables. (3) Rule-based methods and ML models

are often taken as separate approaches. Is it possible to benefit

from both and improve the ER accuracy by unifying the two?

Example 1: E-commerce companies want to identify mer-

chant accounts that conduct fraudulent behaviors, e.g., account

abuse [68] when two merchants boost sales by buying the

same products from each other. As an example, consider four

relations shown in Tables I–IV, for custermors, shops, products

and orders, with the following schemas, respectively:

◦ Customers(cno, name, phone, addr, pref),
◦ Shops(sno, sname, owner, email, loc),
◦ Products(pno, pname, price, desc), and

◦ Order(ono, buyer, seller, item, IP).
The company finds that shops s2 and s4 buy the same

product from each other, as follows: (1) customer c4 (the

owner of shop s4, tuple t9 in D2) buys product p2 from shop

s2 (t15 in D4); (2) customer c1 buys the same product p2 from

s4 (t18 in D4); and (3) c1 is the owner of s2 (by deduction).

However, the deduction is nontrivial. It needs several steps.

(1) The company finds that c2 and c3 are the same customer

as they share the same name, phone and addr, by using a rule.

(2) It identifies products p2 and p3 in D3, since they have the

same name and semantically similar descriptions. Specifically,

it employs an ML model to match p2.desc and p3.desc.

(3) It matches shops s4 and s5 in D2 since they have the same

email and similar names in D2, and their owners c4 and c5
(tuples t9 and t10 in D2) have the same phone in D1 (t4 and

t5 in D1). This step is collectively checked across D2 and D1.

(4) It identifies customers c1 and c3 in D1 since they have

the same address and similar names, and moreover, they buy

product p2 (i.e., p3) in shop s4 (tuple t9 in D2) from the same

IP address 113.55.126.9 (tuples t16 and t17 in D4). This step

is “deep” ER and makes use of the prior matches of shops s4
and s5 in D2 (step 3) and products p2 and p3 in D3 (step 2).

(5) Now it concludes that c1 and c2 are the same customer

since both c2 and c1 match c3 (steps 1 and 4); hence the

fraudulence (c1 owns s2, which buys product p2 from s4). �

The example highlights the need for conducting deep and

collective ER, and for using both logic rules and ML models.

Contributions & organization. This paper studies deep and

collective ER, by unifying logic rules and ML models.

(1) Embedding ML in rules (Section II). Following [31], we

extend matching dependencies (MDs [30], a class of ER rules)

by (a) embedding ML classifiers for ER as predicates, and (b)

supporting collective ER on multiple tables. We refer to the

extended MDs as MRLs (Matching Rules with mL). We show

how MRLs improve ER accuracy and interpret ML predictions.

(2) A fixpoint model (Section III). We model deep and collec-

tive ER as a form of the chase with a set Σ of MRLs [58]. The

chase is Church-Rosser, i.e., it converges at the same set of

matches no matter what MRLs in Σ are used and in what order

the rules are applied. We show that the improved ER accuracy

comes at a price of increased complexity: while deep ER is in

polynomial time (PTIME), collective ER becomes intractable

in the absence of recursion. To scale with large datasets, we

propose a fixpoint model for deep and collective ER, and

parallelize the fixpoint computation in the following sections.

(3) Data partitioning (Section IV). To parallelize the fixpoint

process, we develop a strategy to partition the data, in place of

blocking [66], [49]. The partitioning strategy adapts the Hyper-

cube algorithm of [6], [14] for parallel processing of conjunc-

2060

2022 IEEE 38th International Conference on Data Engineering (ICDE)

2375-026X/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDE53745.2022.00200

20
22

 IE
EE

 3
8t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(IC

DE
) |

 9
78

-1
-6

65
4-

08
83

-7
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

DE
53

74
5.

20
22

.0
02

00

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on May 20,2023 at 08:40:33 UTC from IEEE Xplore. Restrictions apply.

cno name phone addr pref

t1 c1 Ford Smith (213) 243-9856 1st Ave, LA
clothing,
makeup

t2 c2 F. Smith (213) 333-0001 1st Ave, LA clothing
t3 c3 F. Smith (213) 333-0001 1st Ave, LA dress
t4 c4 Tony Brown (347) 981-3452 9 Ave, NY sports
t5 c5 T. Brown (347) 981-3452 - sports

TABLE I
AN INSTANCE D1 OF SCHEMA Customers

sno sname owner email loc
t6 s1 Comp. World c1 FSm@g.com 1st Ave, LA

t7 s2
Smith’s

Tech shop
c2 F Sm@g.com 1st Ave, LA

t8 s3 Lap. store c3 jp@youp.com 1st Ave, LA
t9 s4 T’s Store c4 T.Brown@ga.com 9 Ave, NY
t10 s5 Tony’s Store c5 T.Brown@ga.com -

TABLE II
AN INSTANCE D2 OF SCHEMA Shops

pno pname price desc
t11 p1 Apple MacBook $1000 Apple MacBook Air (13-inch, 8GB RAM, 256GB SSD)
t12 p2 ThinkPad $2000 ThinkPad X1 Carbon 7th Gen : 14-Inch, 16GB RAM, 512GB Nvme SSD
t13 p3 ThinkPad $1800 ThinkPad X1 Carbon 7th Gen 14” - 16 GB RAM - 512 GB SSD
t14 p4 Acer Laptop $500 Acer Aspire 5 Slim Laptop, 15.6 inches, 4GB DDR4, 128GB SSD, Backlit Keyboard

TABLE III
AN INSTANCE D3 OF SCHEMA Products

ono buyer seller item IP
t15 o1 c4 s2 p2 156.33.14.7
t16 o2 c3 s4 p2 113.55.126.9
t17 o3 c1 s5 p3 113.55.126.9
t18 o4 c1 s4 p2 143.32.11.2

TABLE IV
AN INSTANCE D4 OF SCHEMA Orders

tive queries in one round of communication. We show that it is

NP-complete to partition the data with the minimum cost. This

said, we provide an effective heuristic partitioning algorithm.

(4) Parallel algorithm (Section V). On the partitioned data, we

develop a parallel algorithm, denoted by DMatch, to support

the fixpoint process for deep and collective ER. We propose a

strategy to reduce repeated checking, and implement DMatch
based on partial evaluation and incremental computation, to

reduce both computation cost and communication cost. We

show that DMatch is parallelly scalable [47], i.e., it guarantees

to reduce runtime when more processors are used.

(5) Experimental study (Section VI). Using real-life and syn-

thetic data, we empirically find the following. (a) By support-

ing deep and collective ER and by unifying ML and logic,

DMatch is 23% and 38% more accurate than ML models and

logical methods for ER, respectively; it outperforms deep ER

and collective ER by 21% and 32%, respectively. Its F-measure

is 0.95 on average. (b) DMatch scales well with large datasets.

It takes 505s on datasets of 30M tuples using 16 machines. It

is even faster than 7 out of 8 state-of-the-art ER baselines. (c)

DMatch is parallelly scalable with the number n of processors

used. When n varies from 4 to 32, DMatch is 3.56 times faster.

Related work. We categorize the related work as follows.

Entity resolution. There has been a host of work on ER, clas-

sified as follows: (1) ML-based, e.g., deep learning [25], [50],

[67], [48], active learning [9], [55], and transfer learning [43],

(2) Rule-based, e.g., uniqueness constraints [38], matching

dependencies (MDs) [30], [29], [16], [11], [46], and datalog-

like rules [10], [65]; and (3) hybrid, e.g., [12], by employing

MDs as blocking keys and ML for classification. JedAI [53]

is a toolkit that combines various state-of-the-art ER methods.

Collective ER was proposed in [17], [10]; [17] also advocated

“recursive” ER by leveraging entity co-occurrence and aggre-

gating similarity scores from neighboring entities.

ER is conceptually conducted as a single pass of pairwise

comparisons of tuples in a single table, in quadratic-time [28].

To speed it up, windowing [39] and blocking [52], [51] have

been commonly used. Windowing first sorts the tuples in a

table; it then employs a sliding window and compares only

tuples in the same window. Blocking first clusters similar

entities into “disjoint” blocks via blocking keys, and then

conducts pairwise comparisons only within each block.

This work differs from the prior work as follows. (1) It

makes a first attempt to formalize deep ER and collective ER

in a uniform logical framework in terms of logic rules with

embedded ML predicates, beyond similarity score aggregation.

(2) It settles the complexity of deep ER and collective ER.

(3) To support deep and collective ER, it develops a fixpoint

computation model and parallelly scalable algorithms.

Closer to this work are [31] and [32]. [31] proposes a

class of entity enhancing rules (REEs) that may embed ML

classifiers as predicates. Using REEs, [32] develops a parallel

algorithm for error detection (entity resolution and conflict

resolution). MRLs studied in this paper are a special case of

REEs, and the correctness of our chase (Section III) follows

from the Church-Rosser property verified in [31].

In contrast to [31], [32], (1) we focus on ER by extending

MDs with ML predicates, so that we can develop efficient

algorithms for ER (Section V); (2) we settle the complexity

of deep ER and collective ER, which is not studied in [31];

and (3) we study deep ER with a fixpoint model, to make new

matches by using matches in the prior rounds, while [32] only

detects violations of REEs in a single pass, without recursion.

Parallel ER. Parallel ER algorithms have been studied under

MapReduce [45], [56], [22], [35], [26], [61], [8], [27] or

MPC [62]. In particular, a blocking strategy under MapReduce

was developed [22] by revising the HypeCube algorithm [13].

In contrast to the prior work, (1) we provide the first parallel

algorithm for deep and collective ER, beyond conventional ER

on a single table. (2) We propose a fixpoint model for parallel

ER; as opposed to MapReduce that shuffles data between

mappers and reducers, no raw data is sent between different

workers during the fixpoint computation, and hence incurs

less communication cost. (3) We develop a data partitioning

algorithm in place of blocking. It extends the HyperCube

algorithm of [13] to handle a set of MRLs, for deep and

collective ER across multiple tables rather than on a single

table [22]. (4) To the best of our knowledge, we provide the

first (deep) ER algorithm with provable parallel scalability.

2061

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on May 20,2023 at 08:40:33 UTC from IEEE Xplore. Restrictions apply.

II. EMBEDDING ML MODELS IN RULES

In this section, we define MRLs, an extension of matching

dependencies (MDs [30]) with embedded ML predicates.

Datasets. Consider a database schema R = (R1, . . . , Rm),
where each Ri is a relation schema (A1 : τ1, . . . , An : τn), and

each Ai is an attribute of type (domain) τi. A dataset D of R is

(D1, . . . , Dm), where Di is a relation of Ri for i ∈ [1,m]. In

particular, we assume w.l.o.g. a designated attribute id for each

Ri, such that a tuple of Ri represents an entity with identity id.

Predicates. Predicates over R are defined as follows:

p ::= R(t) | t.A = c | t.A = s.B | M(t[Ā], s[B̄]).

Here following tuple relational calculus [5], (1) R(t) is

a relation atom over R, where R ∈ R, and t is a tuple

variable bounded by R(t). (2) When t is bounded by R(t)
and A is an attribute of R, t.A denotes the A-attribute of t.
(3) In t.A = c, c is a constant in the domain of attribute A
in R. (4) In t.A = s.B, t.A and s.B are compatible, i.e.,
R(t) and R′(s) are specified, and A ∈ R and B ∈ R′ have

the same type. In particular, t.id = s.id, referred to as id
predicate, denotes that the entities represented by t and s
match. Moreover, (5) M is an ML classifier for ER, where

Ā and B̄ are vectors of pairwise compatible attributes, and

t[Ā] and s[B̄] are vectors of the values of attributes Ā and

B̄ in tuples t and s, respectively. That is, ML predicates are

applied to vectors of multiple attributes, e.g., DeepER [25]

can be even applied to entire tuples taken as vectors.

Intuitively, M(t[Ā], s[B̄]) can be any well-trained ML clas-

sifier for ER, e.g., [9], [55], [50], [25], [12], [40], [43], [41],

[42], or for semantic similarity checking, e.g., [54], [15], [64].

We refer to such M as an ML predicate, which returns true
if it predicts that t[Ā] and s[B̄] “match”, and false otherwise.

Observe the following. (1) ML predicates can take more

than two relations. This said, since most ML predicates in

practice use only two relations (e.g., DeepER [25], ERBlox

[12], fasttext [19]), we focus on binary ML classifiers to sim-

plify the presentation. (2) One can take a probabilistic model

as an ML predicate as follows: it returns true if the probability

is above a predefined threshold and returns false otherwise.

(3) ML classifiers are able to check semantic similarity,

e.g., “US” and “America”; moreover, ML predicates include

classifiers for NLP (e.g., NER [34]), ER (e.g., ditto [48] and

DeepER [25]) and conflict detection (e.g., HoloClean [57]).

Matching rules. We define MRLs ϕ over R as

X → l.

Here (1) X is a conjunction of predicates over R, and (2) l
is a predicate of the form either t.id = s.id or M(t[Ā], s[B̄]),
where t and s are tuple variables bounded in X . We refer to X
and l as the precondition and consequence of ϕ, respectively.

Note that MDs [30] can be expressed as MRLs X → l in

which X consists of two relation atoms R1(t1) and R2(t2),
equality atoms t.A = s.B, M(t1[Ā1], t2[Ā2]) that simulates

similarity checking, and l is t1.id = t2.id. MRLs extend MDs
by supporting (a) ML predicates M(t[Ā], s[B̄]), (b) constant

predicates t.A = c, and (c) collective ER across multiple

relations, while MDs are defined on at most two relations.

Example 2: Over the dataset of Example 1 we define MRLs.

(1) ϕ1: Customers(tc)∧Customers(t′c)∧tc.name = t′c.name∧
tc.phone = t′c.phone ∧ tc.addr=t′c.addr→tc.id=t′c.id. The

MRL says that if customers tc and t′c share the same name,

phone and address, then they refer to the same person.

(2) ϕ2: Products(tp)∧Products(t′p)∧ tp.pname=t′p.pname∧
M1(tp.desc, t

′
p.desc)→tp.id=t′p.id. It matches two products if

they have the same name and similar descriptions. It uses ML

model M1 to check the similarity of long text descriptions.

(3) ϕ3: Customers(tc)∧Customers(t′c)∧Shops(ts)∧Shops(t′s)∧
M2(ts.name, t′s.name)∧ts.email=t′s.email∧ts.owner=tc.cno∧
t′s.owner = t′c.cno ∧ tc.phone = t′c.phone∧→ts.id = t′s.id. It

matches two shops if they have the same email and similar

names, and if their owners have the same phone number.

(4) ϕ4: Customers(tc)∧Customers(t′c)∧Orders(to)∧Orders(t′o)
∧Products(tp)∧Products(t′p)∧Shops(ts)∧Shops(t′s)∧tc.cno =
to.buyer∧t′c.cno=t′o.buyer∧to.item=tp.pno∧t′o.item=t′p.pno∧
to.seller=ts.sno∧t′o.seller=t′s.sno∧M3(tc.name, t′c.name) ∧
tc.addr=t′c.addr∧to.IP=t′o.IP∧tp.id=t′p.id ∧ ts.id = t′s.id →
tc.id=t′c.id. The MRL identifies two customers if they have

the same address and similar names, and moreover, if they buy

the same product from the same shop at the same IP address.

(5) ϕ5: Customer(tc) ∧ Customer(t′c) ∧ Orders(to) ∧
Orders(t′o)∧tc.cno = to.buyer∧t′c.cno = t′o.buyer∧to.item =
t′o.item→M4(tc.pref, t

′
c.pref). It interprets ML prediction

M4(tc.pref, t
′
c.pref) with logic characteristics (see below). �

Remark. In an MRL X → M(t[Ā], s[B̄]), X provides a logic

“explanation” of ML predictions: it is because logic conditions

X hold that M predicts true on (t[Ā], s[B̄]). For example, ϕ5

says that M4 predicts customers tc and t′c to have similar

preferences because the two have bought the same product.

Semantics. Consider a dataset D of schema R. A valuation
h of tuple variables of ϕ in D, or simply a valuation of ϕ, is

a mapping that instantiates t in each relation atom R(t) of ϕ
with a tuple in the relation of R in D.

We say that h satisfies a predicate p, written as h |= p, if the

following conditions are satisfied. (1) If p is R(t), t.A = c or

t.A = s.B, then h |= p is interpreted as in tuple relational cal-

culus following the standard semantics of first-order logic [5].

(2) If p is M(t[Ā], s[B̄]), then h |= p if the ML classifier M
predicts true when provided with (h(t)[Ā], h(s)[B̄]).

For a conjunction X of predicates over R, we write h |= X
if h |= p for all predicates p in X . A dataset D of R satisfies
an MRL ϕ, denoted by D |= ϕ, if for all valuations h of ϕ in

D, if h |= X , then h |= l. We say that D satisfies a set Σ of

MRLs, denoted by D |= Σ, if for all ϕ ∈ Σ, D |= ϕ.

III. A FIXPOINT MODEL FOR DEEP AND COLLECTIVE ER

Below we first present deep and collective ER, and settle

their complexity (Section III-A). We then propose a fixpoint

model for deep and collective ER in parallel (Section III-B).

2062

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on May 20,2023 at 08:40:33 UTC from IEEE Xplore. Restrictions apply.

A. Deep and Collective Entity Resolution

Deep and collective ER. Consider a database schema R, a

dataset D of R, and a set Σ of MRLs. Deep and collective ER

deduces a set Γ of “matches” and validated ML predictions by

applying a rule in Σ as follows. Initially, Γ consists of pairs

(t.id, t.id) for all tuples t in D. For each MRL ϕ = X → l ∈ Σ
and valuation h of ϕ in D, when h |= X ,

◦ if l is t.id=s.id, then add (h(t).id, h(s).id) to Γ, referred

to as a match; i.e., the two denote the same entity; and

◦ if l is M(t[Ā], s[B̄]), then mark M(h(t)[Ā], h(s)[B̄]) as

a validated prediction, and add it to Γ.

We verify that h |= p for predicates p ∈ X
◦ if p is t.id = s.id and (h(t).id, h(s).id) is in Γ; or

◦ if p is M(t[Ā], s[B̄]) and is validated in earlier steps.

The process proceeds until Γ cannot be further extended.

Observe the following about the process.

(1) Formally, the process can be modeled as an extension of the

chase [58] with MRLs [31]. Following [31], one can verify that

the chase has the Church-Rosser property [5], i.e., it always

converges at the same set Γ of matches no matter what MRLs
in Σ are used and in what order they are applied. In particular,

MRLs may embed all the ML models listed in Section II while

the extended chase still retains the Church-Rosser property.

Corollary 1: Deep and Collective ER is Church-Rosser. �

As a result, deep and collective ER and Γ are well defined.

We refer to Γ as the set of matches deduced by Σ in D. We

say that tuples t1 and t2 in D are matched by Σ, denoted by

(D,Σ) |= (t1.id, t2.id), if (t1.id, t2.id) ∈ Γ.

(2) Deep and collective ER is a recursive process. It employs

matches of Γ found in earlier steps, as opposed to conventional

ER with blocking and windowing. Moreover, a valuation may

span across multiple relations, as opposed to MDs and other

quality rules that are defined on at most two relations.

(3) It is not possible in principle to express recursion with

joins; indeed, recursion is not expressible in first-order logic

(and join in relational algebra); in practice it is not known in

advance how many levels a recursive computation needs to go.

Complexity. We study the deep and collective ER problem.

◦ Input: A database schema R, a set Σ of MRLs over R,

a dataset D of R and two tuples t and s in D.

◦ Question: Does (D,Σ) |= (t.id, s.id)?

We also study two of its special cases: (1) collective ER when

MRLs in Σ may be defined with an unbounded number of

relations (collective) but do not carry id predicates in their

preconditions (not deep); and (2) deep ER when all MRLs in Σ
are defined with a fixed constant of relation atoms (not collec-

tive)) but may have id predicates in their preconditions (deep).

Theorem 2: (1) Collective ER is NP-complete. (2) Deep ER
is in PTIME. (3) Deep and collective ER is NP-complete. �

That is, the deep and collective ER problem is already

intractable even without recursion. Here we assume w.l.o.g.
that testing ML predictions with pretrained ML models in

MRLs is in PTIME, as commonly found in practice.

Proof sketch: We show that (1) deep and collective ER is in

NP; (2) collective ER is NP-hard; (3) deep ER is in PTIME.

(1) We define a notion of proof graphs and show a small model

property: (D,Σ)|=(t.id, s.id) iff there is a proof graph of size

at most ||Σ||(|Σ|+1)|D|2 to encode (D,Σ) |= (t.id, s.id). Here

||Σ|| (resp. |D|) is the number of rules in Σ (resp. tuples in

|D|), and |Σ| refers to the maximum number of tuple variables

of rules in Σ. Then we give an NP algorithm: guess a graph

T with at most O(||Σ||(|Σ|+1)|D|2) nodes, and check whether

T is a proof graph of (D,Σ) |= (t.id, s.id), in PTIME.

(2) We show that collective ER is NP-hard by reduction from

the Boolean conjunctive query evaluation problem, which is

NP-complete [20]. It is to decide, given a Boolean conjunctive

query Q and a dataset D′, whether Q(D′) = true. The

construction uses no id predicate in the preconditions of MRLs.

(3) For deep ER, we develop an algorithm to check whether

(t.id, s.id) can be deduced by Σ in D. It is in PTIME since (a)

there exist at most O(||Σ||(|Σ|+1)|D|2) matches and validated

ML predictions in Γ, (b) each MRL in Σ has at most k relation

atoms for a constant k, and (c) for each predicate l, it is in

PTIME to check whether l can be added to Γ since the number

of all valuations of MRLs in D is bounded by O(||Σ|||D|k). �
We identify another tractable case of the problem. An MRL

ϕ = X → l is acyclic if the hypergraph of X is acyclic. Here

the hypergraph of X is defined by treating the attributes in X
as vertices, and taking tuples in X as hyperedges.

Theorem 3: The deep and collective ER problem is in PTIME
with acyclic MRLs. �

Proof sketch: We show that (†) given a dataset D and an

acyclic MRL ϕ, it is in PTIME to check whether there exists

a valuation of ϕ in D that does not satisfy ϕ by extending the

proofs of [37], [21]. Then we compute the set Γ of matches of

ϕ in D as follows: for each MRL ϕ=X→l in Σ, if there exists

a valuation h of ϕ in D that does no satisfy ϕ (i.e., h |= X
but h �|= l), then add h(l) to Γ. It takes PTIME by (†) above

since there exist most O((||Σ|||Σ|+ 1)|D|2) matches in Γ. �

Remark. (1) Deep ER is in PTIME for any fixed constant k
of tuple variables, regardless of the specific value of k. When

k is bounded, so is the number of tables involved. (2) The in-

tractability of collective ER is introduced by the number of tu-

ple variables. Collective ER (not deep) differs from deep ER in

that (a) MRLs do not allow id predicates in their preconditions

and hence, do not support recursive checking; but (b) it allows

unbounded k and hence, an unbounded number of tables.

B. A Fixpoint Model

The intractability suggests that we develop a parallel model

for deep and collective ER. The model supports data parti-

tioned parallelism by using n workers (processors) P1, . . . , Pn

and a master P0. Consider a dataset D of R and a set Σ of

MRLs. We partition D and distribute the data across n workers.

2063

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on May 20,2023 at 08:40:33 UTC from IEEE Xplore. Restrictions apply.

Under the Bulk Synchronous Parallel (BSP) model [63],

parallel deep and collective ER is conducted in supersteps,

modeled as the following simultaneous fixpoint computation:

Γ0
i = A(Σ,Wi) (1)

Γr+1
i = AΔ(Σ,Wi,ΔΓr

i) (2)

For i ∈ [1, n], Γr
i is the set of local matches deduced at worker

Pi in step r, Wi is the fragment of D allocated to worker Pi by

the partition, and ΔΓr
i is the set of matches that are deduced

at other workers and are passed to worker Pi in step r as

messages. As will be seen in Section V, A is a sequential

algorithm for deep and collective ER that operates on dataset

Wi with MRLs in Σ, and AΔ is a sequential algorithm that

incrementally deduce matches in response to updates ΔΓr
i .

More specifically, the parallel deduction works as follows.

(1) In the first superstep, each worker Pi deduces its local

matches Γ0
i by algorithm A, by chasing its local data Wi with

MRLs in Σ. As will be seen in Section V, this is a recursive

process itself. All n workers execute algorithm A in parallel.

At the end of the step, Pi sends Γ0
i to master P0, which routes

the new matches to relevant workers to ΔΓ0
i , i.e., it sends

(t.id, s.id) and M(t[Ā], s[B̄]) to workers that also host t or s.

(2) Upon receiving ΔΓr
i , worker Pi incrementally deduces its

local matches Γr+1
i by executing AΔ on Wi, which treats

ΔΓr
i as updates, and references matches in Γr

i ∪ΔΓr
i in the

chase (see Section V). At the end of the step, Pi sends newly
deduced matches in this step to master P0, and P0 routes the

changes to relevant workers via messages as in step (1) above.

(3) Step (2) above iterates until no more changes can be made,

i.e., ΔΓr
i = ∅. At this point, the process returns the union

Γ =
⋃

i∈[1,n] Γ
r
i . It is a fixpoint

⋃
i∈[1,n] Γ

r+1
i =

⋃
i∈[1,n] Γ

r
i .

Example 3: Continuing with Example 2, assume that the

dataset D is partitioned into two fragments W1 and W2, where

W1={t1, t2, t3, t4, t9, t10, t12, t13, t15, t16, t17, t18} and W2 =
{t4, t5, t6, t7, t8, t9, t10, t11, t14, t17} (see Example 5 for the

partition). Fragments W1 and W2 are assigned to workers P1

and P2, respectively. Given a set Σ consisting of ϕ1 − ϕ5

presented in Example 2, the fixpoint model works as follows.

(1) In the first superstep, P1 deduces local matches Γ0
1 =

{(t2.id, t3.id), (t12.id, t13.id)} ∪ Γ0
M by algorithm A us-

ing rules ϕ1, ϕ2, ϕ3 and ϕ5 to W1, where Γ0
M =

{M4(t1.prf, t3.prf),M4(t1.prf, t4.prf),M4(t3.prf, t4.prf)} is

the set of validated ML predications; similarly P2 deduces

Γ0
2={(t4.id, t5.id), (t9.id, t10.id)} by applying ϕ2 and ϕ4 to

W2. Then P1 and P2 send Γ0
1 and Γ0

2 to P0, respectively; P0

generates ΔΓ0
1={(t9.id, t10.id)} and sends it to P1.

(2) Once receiving ΔΓ0
1 from master P0, P1 further identifies

(t1.id, t3.id) by running algorithm AΔ on W1 using matches in

Γ0
1∪ΔΓ0

1 and rule ϕ4. Then the local matches of P1 is updated

to Γ1
1 = {(t2.id, t3.id), (t12.id, t13.id), (t1.id, t3.id)} ∪ Γ0

M .

(3) At this point, no new match can be exchanged between

fragments. Then the process returns the union of Γ1
1 and Γ0

2,

i.e., Γ = Γ1
1 ∪ Γ0

2 = {(t1.id, t3.id), (t2.id, t3.id), (t4.id, t5.id),

(t9.id, t10.id), (t12.id, t13.id)} ∪ Γ0
M as the result. �

The fixpoint model warrants the correctness of collective ER.

Proposition 4: Given any dataset D of schema R and any Σ
of MRLs over R, deep and collective ER converges at the set
of matches deduced by Σ in D under the fixpoint model. �

Proof sketch: We show this by induction on the number of

supersteps, using the Church-Rosser property (Corollary 1). �

Remark. The fixpoint model parallelizes sequential algorithms

A and AΔ along the same lines as the GRAPE model for

graphs [33]. It differs from GRAPE as follows. GRAPE
targets graph computations and exchanges messages between

vertex neighbors along edges across different fragments. For

relational data, in contrast, there exist no tuples that “connect”

different fragments and there is no notion of “neighbors”.

IV. DATA PARTITIONING FOR COLLECTIVE ER

In this section, we develop a data partitioning algorithm

HyPart for deep and collective ER, to reduce both commu-

nication cost and computation cost. The algorithm extends

Hypercube (HC) [6] and combines it with multiple query op-

timization (MQO) [44]. The objective is to use partitioning in

place of blocking for collective rules across multiple relations.

Review. We start with a review of HC [6] and MQO [44].

Hypercube. Given a dataset D and a conjunctive query (CQ)

Q that computes multiway natural joins in D, HC partitions D
into n fragments W1, . . . ,Wn, such that Q can be answered

locally, i.e., Q(D)=∪i∈[1,n]Q(Wi). We use distinct variables
x1.A1, . . . , xl.Al of Q to denote attributes appearing in the

predicates of Q, e.g., x.A=c or x.A=y.B, such that xi.Ai=
xj .Aj cannot be deduced from predicates in Q if i �= j.

Given a CQ query Q, HC works in three steps. (1) It

first organizes n workers Pi(i∈[1, n]) into an l-dimensional

hypercube H=[n1]×. . .×[nl], where l is the number of distinct

variables in Q, n=n1·. . .·nl, and each ni is determined via

Lagrangean multipliers [6]. (2) It then independently chooses

l hash functions hi (i∈[1, l]), one for each distinct attribute

xi.Ai. (3) For each tuple tD of relation schema Rr in D and

each tuple variable tQ of Rr in Q, it sends tD to worker

Pi identified by both attributes in tQ and hash functions;

specifically, let xi1 .Ai1 , . . . , xik .Aik be all distinct attributes in

tQ; then tD is sent to the worker located at (p1, . . . , pl), where

pij=hij (tD.Aij)(j∈[1, k]); for an attribute xT .AT that is not

in tQ, we set pT=∗, indicating that the tuple is sent to all work-

ers with pT∈[1, nT]. Denote by t
tQ
D the tuple generated from

tD by replacing tD.Aij with hij (tD.Aij) for each j∈[1, k].
Remark. There are connections between CQ and MRLs.

(1) For an ML classifier M(t[Ā], s[B̄]) in MRLs, we can treat

t[Ā] and s[B̄] as distinct variables since M(t[Ā], s[B̄]) can

only be computed by comparing all pairs of tuples. Similarly,

we also treat id attributes as distinct variables. Here we slightly

extend the definition of distinct variables of [6], since MRLs
contain ML predicates that specify associations between at-

tributes, which are not considered in the traditional Hypercube.

2064

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on May 20,2023 at 08:40:33 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. An example of MQO query plan

(2) Given a set Σ of MRLs and a dataset D, one might want

to partition D by applying HC to D for each MRL. However,

this requires multiple accesses to dataset D, one for each MRL,

and incurs heavy cost when D is large.

It is actually intractable to minimize the hash function com-

putation. We formulate the problem as follows. Given an MRL
ϕ=X→l, assume that X involves tuple variables t1, . . . , tL.

Given D, we denote the set of generated tuples via HC for

ϕ as Eϕ=∪j∈[1,L] Pϕ(tj ,D), where Pϕ(tj ,D) consists of all

generated tuples t
tj
D (see above) for each tuple tD in D, which

has the same relation schema as tj . Denote by H(Σ,D) =
∪ϕ∈ΣEϕ the set of all generated tuples to process D using Σ.

The minimum hashing function problem (MHFP) is:

◦ Input: A dataset D, a set Σ of MRLs and a threshold k.

◦ Question: Is there HC for Σ such that |H(Σ,D)|≤k?

Theorem 5: MHFP is NP-complete. �

Proof sketch: The problem is in NP, since we can guess a

hash function assignment for each rule ϕ, and check whether

|H(Σ,D)|=| ∪ϕ∈Σ Eϕ|≤k. The lower bound is verified by

reduction from the subgraph isomorphism problem (cf. [36],

which is to decide, given two undirected graphs G1 and G2,

whether G2 has a subgraph that is isomorphic to G1. �

MQO. To reduce the hash function computation, we adopt the

MQO technique (see e.g., [44]). Given multiple CQ queries

Q1, . . . , Qk on a dataset D, MQO is to generate a query plan

and compute all answers Q1(D), . . . , Qk(D) such that the

intermediate results can be shared as much as possible; here a

query plan is a DAG (Direct Acyclic Graph) consisting of data

access and natural joins operators that are used to answer the

CQ queries. Intuitively, MQO decomposes Q1, . . . , Qk into

smaller subqueries, finds common subqueries, and constructs

a query plan QP for these queries (see Fig. 1 for an example).

Combining HC and MQO. We adopt MQO to improve the

performance of HC as follows. We first construct a query

plan QP for MRLs in Σ using the MQO technique. We then

assign hash functions based on QP such that different rules

with common subqueries share the same hash functions.

This is, however, nontrivial. (1) We need a strategy to assign

the hash functions such that their computations can be reused

as much as possible. (2) For different rules, a tuple with the

same hash functions may not be sent to the same worker, since

(a) workers are organized as a hypercube, and (b) the same

hash functions in different rules may correspond to different

dimensions of the hypercube and hence different positions

(i.e., workers). This incurs redundant communication cost.

To tackle these, we introduce three orderings.

(1) We impose an order Or on the rules, and apply HC to the

Algorithm Partition
Input: A dataset D and a set Σ of MRLs.
Output: A set of fragments W1, . . . ,Wn.
1. QP := QPforMQO(Q1, . . . , Qn);
2. StackQuery := SortQuery(Q1, . . . , Qn);
3. while StackQuery �= ∅ do
4. pop the top query Qc off the stack StackQuery;
5. QP := AssignHash(QP, Qc);
6. W1 := ∅; . . . ;Wn := ∅;
7. for each query tuple tQ in QP do
8. (ΔW1, . . . ,ΔWn) := HyperCube(D, tQ);
9. W1 := W1 ∪ΔW1; . . . ;Wn := Wn ∪ΔWn;
10. return (W1, . . . ,Wn).

Fig. 2. Algorithm HyPart

rules in Σ following Or. Intuitively, the rules ranked higher

share more relation atoms and hence more hash functions.

(2) We also use an order Op on the predicates of rules, and

assign hash functions to the distinct variables following Op.

Intuitively, the higher the predicates are ranked, the more rules

share hash functions for their distinct variables.

(3) We use another order Oh on hash functions, and sort

distinct variables following this order. Then a tuple with same

functions for different rules can be sent to the same worker.

Here Oh can be an arbitrary order. It is used to ensure that

the same order is conformed by different rules.

Example 4: Consider three MRL rules ϕ1=R(t1)∧S(t2)∧
t1.B=t2.A∧t2.B=t1.A→t1.id=t2.id, ϕ2 = R(t3)∧T (t4)∧
t3.B=t4.A∧t4.B=t3.A→t3.id=t4.id and ϕ3=T (t5)∧P (t6)∧
t5.B=t6.A∧t6.B=t5.A→t5.id=t6.id. We assign hash func-

tions to maximize sharing as follows. We can use only six hash

functions (e.g., h1, h2, h3, h4, h5 and h6) to process all of ϕ1,

ϕ2 and ϕ3 by sharing hash functions, although the rules have

12 distinct variables. More specifically, (1) we assign h1, h2

and h3 to R.A, R.B and R.id, respectively, in both ϕ1 and ϕ2,

since these variables appear in both ϕ1 and ϕ2 (here we simply

use the relation schemas R, S and T to represent the tuple

variables). (2) For S.A and S.B in ϕ1 (resp. T.A and T.B in

ϕ2), since they equal to R.B and R.A, respectively, they share

hash functions with R.B and R.A, i.e., h2 and h1 are assigned

to S.A and S.B in ϕ1 (resp. T.A and T.B in ϕ2), respectively.

(3) For T.A and T.B in ϕ3, they can reuse these function

since they have been assigned hash functions in ϕ2. (4) For the

remaining variables (i.e., S.id in ϕ1, T.id in ϕ2 and P.id in ϕ3),

we assign h4, h5 and h6 to S.id, T.id and P.id, respectively.

We reduce the communication cost by using Oh. Define

Oh as (h1, h2, h3, h4, h5, h6), and sort distinct variables in

ϕ1 (resp. ϕ2 and ϕ3) as (R.A,R.B,R.id, S.id), (resp. (R.A,
R.B,R.id, T.id) and (T.B, T.A, P.id, T.id)); note that all of

ϕ1, ϕ2 and ϕ3 have four distinct variables. Then for all of

ϕ1, ϕ2 and ϕ3, tuples in R (resp. T) to be checked are sent to

the same place, i.e., workers at positions (h1(R.A), h2(R.B),
h3(R.id), ∗) (resp. (h1(T.B), h2(T.A), ∗, h5(T.id))). �

Algorithm. Putting these together, we present algorithm

HyPart in Fig. 2. Given a dataset D and a set Σ of MRLs,
HyPart partitions D into W1, . . . ,Wn as follows. It first

computes a “query plan” QP for rules in Σ via procedure

QPforMQO (line 1). Next, it defines order Or on rules in Σ via

2065

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on May 20,2023 at 08:40:33 UTC from IEEE Xplore. Restrictions apply.

function SortQuery (line 2), and assigns hash functions to each

rule via function AssignHash following orders Op, Oh and Or

(lines 3-5). After that, HyPart partitions D into fragments

W1, . . . ,Wn based on the assigned hash functions with HC
(lines 7-9). It returns the fragments as the partition (line 10).

Procedure SortQuery. SortQuery defines an order Or on the

rules in Σ as follows. Given a rule ϕ, denote by Nϕ the set of

rules in Σ that share common predicates with ϕ in QP. It sorts

rules ϕ in Σ in the descending order of |Nϕ| (i.e., the number

of rules in Nϕ; denoted by Sϕ), which makes the order Or.

Procedure AssignHash. Given a query plan QP and a rule ϕ,

AssignHash assigns hash functions to distinct variables of ϕ
(see HC above), and sorts these variables following the order

Oh on hash functions as described above. As remarked earlier,

we cannot assign hash functions randomly, since the order on

hash functions affects the dimensions of hypercube, which in

turn affects the number of hash functions shared among rules.
At first, we assign hash functions to distinct variables of

ϕ. (1) We first impose an order Op on the predicates in ϕ.

More specifically, given a predicate lp of ϕ in QP, denote by

Nlp the set of rules having lp as a predicate; the score of a

predicate lp is defined as Slp = |Nlp |, which makes the order

Op. (2) We then assign hash functions to distinct variables

in ϕ following both Op and Oh, and also assign these hash

functions to other rules that share predicates with ϕ, such that

rules with the same predicates share the same hash functions.
Next we sort the distinct variables based on the order Oh

on hash functions. Assume that hash functions h1, . . . , hm are

assigned to distinct variables t1.A1, . . . , tm.Am, respectively.

If the order Oh on hash functions is (h1, . . . , hm), then the

order of these distinct variables is (t1.A1, . . . , tm.Am).

Example 5: Consider dataset D in Example 1 and the set Σ
of ϕ1–ϕ5 in Example 2. A fragment of query plan QP of Σ
is shown in Fig. 1. Algorithm HyPart partitions D as follows.

(1) HyPart first assigns hash functions to rules in Σ. Since each

rule has at most 24 attributes (i.e., the number of attributes

in ϕ4), we need 24 hash functions, sorted as (h1, . . . , h24);
denote this order by Oh. It assigns these functions as follows.

At first, HyPart sorts MRLs in Σ based on score function

Sϕ, and obtains Or=(ϕ1, ϕ3, ϕ4, ϕ2, ϕ5). This is because

ϕ1 shares predicates (i.e., tc.addr=t′c.addr and tc.phone =
t′c.phone) with ϕ3 and ϕ4, i.e., Sϕ1=2; ϕ3 and ϕ4 only share

predicates with ϕ1, i.e., Sϕ3=1 and Sϕ4=1 (see Fig. 1); and ϕ2

and ϕ5 do not share predicates with others, i.e., Sϕ2
=Sϕ5

= 0.
HyPart then assigns hash functions to variables of the MRLs

in Σ following Or. Here we only show how to handle ϕ1; the

other rules are handled similarly. Rule ϕ1 has five distinct vari-

ables: tc.name, tc.phone, tc.addr, tc.id and t′c.id. We assign

hash functions as follows. (a) HyPart first determines the order

Op of predicates in ϕ1: p3, p1, p2, p4, where p1 = (tc.phone =
t′c.phone), p2 = (tc.addr = t′c.addr), p3 = (tc.id = t′c.id)
and p4 = (tc.name = t′c.name) are all predicates in ϕ1. (b)

Based on Op, HyPart then sorts the variables in ϕ1 as: (tc.id,
t′c.id, tc.phone, tc.addr, tc.name). (c) Then distinct variables

tc.id, t
′
c.id, tc.phone, tc.addr and tc.name are assigned hash

functions h1, h2, h3, h4 and h5, i.e., the first five hash functions

in Oh, respectively; meanwhile, we also assign the hash func-

tions to other rules that share predicates with ϕ1, e.g., we as-

sign h3 (i.e., the hash function for tc.phone) to tc.phone in ϕ3.

(2) After all rules are assigned hash functions, HyPart parti-

tions D using HC. Here we only show the assignment of the

tuple t1 in Table I; the other tuples are assigned similarly.
Since ϕ1, ϕ3, ϕ4 and ϕ5 have a relation atom in Customer,

we distribute t1 once for each of these rules. Take ϕ1 as an

example; it sends t1 to worker Pi located at (h1(t1.id), ∗,
h2(t1.phone), h3(t1.addr), h4(t1.name)), where ∗ means that

t1 is sent to all workers sharing the same first four dimensions

(see [6]). We will see that since ϕ1 and ϕ4 use both attributes

t1.name and t1.addr, the computations of h1(t1.name) and

h3(t1.addr) are reused when HyPart handles t1 for ϕ4. �

Analysis. Recall that with HC we can compute the query

result Q(D) locally, i.e., Q(D)= ∪i∈[1,n] Q(Wi). We show

that HyPart partitions D such that D |= Σ can be checked

locally, i.e., D |= Σ if and only if Wi |= Σ (i ∈ [1, n]).

Lemma 6: Given a dataset D and a set Σ of MRLs, HyPart
partitions D such that D|=Σ can be verified locally. �

Proof sketch: This is to show that D�|=Σ if and only if there

exists a fragment Wi (i∈[1, n]) such that Wi �|= Σ. It suffices

to prove that if there exist an MRL ϕ=X→l in Σ and a

valuation h of ϕ in D such that h|=X but h�|=l, then h is also

a match of ϕ in some fragment Wi. To this end, we verify by

contradiction that if h is not a valuation in any fragment, then

there exist two attributes t.A and s.B in ϕ such that t.A=s.B
is a precondition in ϕ (i.e., they are assigned the same hash

function f); however, h(t).A �= h(s).B since they are sent

to different workers using the same hash function, which

contradicts the fact that h|=X . Note that for id predicates

t1.id = t2.id and ML predicates M(t1[Ā1], t2[Ā2]) in X , there

exists at least one worker containing both h(t1) and h(t2) by

the property of Hypercube [6], since we treat ti.id and ti[Āi]
(i ∈ [1, 2]) as distinct variables as remarked earlier. �

Remarks. (1) As will be seen in Section V, MQO not only

reduces hash function computation, but also speeds up the

computation of local matches (i.e., to validate D|=Σ locally).

(2) To balance the workload among workers, we adopt the

virtual block and skewness reduction techniques of [32], [18].

More specifically, when partitioning D into n fragments, we

first construct n2 virtual blocks to form the hypercube, and

then partition D into n2 virtual blocks as described as above;

after that we split the “heavy” blocks (i.e., blocks with much

more tuples than the others) into multiple small blocks by

evenly partitioning an instance in D [18]. We evenly distribute

these virtual blocks to n fragments using the algorithm of [7]

for the minimum makespan problem, to balance the workload.

V. PARALLEL ENTITY RESOLUTION

We next develop a parallel algorithm DMatch to implement

the fixpoint model (Section III). We first present Match, a

sequential algorithm (Section V-A). We then deduce parallelly

scalable DMatch by parallelizing Match (Section V-B).

2066

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on May 20,2023 at 08:40:33 UTC from IEEE Xplore. Restrictions apply.

Input: a dataset D and a set Σ of MRLs.
Output: Set Γ of local matches of D using Σ.
1. Γ := {(t.id, t.id) | t ∈ D}; H := ∅;
2. (Γ,H) ← Deduce(D,Σ);
3. ΔΓ := Γ;
4. while ΔΓ �= ∅ do
5. (ΔΓ,ΔH) := IncDeduce(D,Σ,Γ,H,ΔΓ);
6. Γ := Γ ∪ΔΓ; H := H ∪ΔH;
7. return Γ;

Fig. 3. Algorithm Match

A. Sequential Algorithm Match

Algorithm Match computes the set Γ of matches using the

query plan QP constructed in Section IV. To speed up the

process, it reuses intermediate results when checking valua-

tions of Σ in D. However, this is nontrivial. (a) When D is

large, it is too costly to store all intermediate results generated

by QP. (b) Unlike answering multiple CQ queries [44], the

computation of Γ is recursive. As a consequence, unsatisfied

id or ML predicates may become valid during the computation,

and hence we have to revisit some valuations that involve these

changed predicates. Moreover, (c) id predicates are transitive,

i.e., if t1.id = t2.id and t2.id = t3.id, then t1.id = t3.id. It is

necessary to efficiently deduce the transitivity.

We address these by using the following data structures.

(1) Instead of storing all intermediate results, we dynamically

maintain a set of inverted indices for predicates p associated

with nodes np in QP. (a) Consider t.A=s.B, where t (resp.

s) is a tuple variable for instance D1 (resp. D2). For each

common value d in both attribute A of D1 and attribute B of

D2, we create an inverted index from d to tuples t′ in D1 (resp.

D2) with t′.A=d (resp. t′.B=d); similarly for t.A=c. (b) For

M(t[Ā], s[B̄]), an inverted index is constructed from np to

tuples t and s with M(t[Ā], s[B̄])=true. (c) For t.id=s.id, an

inverted index is maintained from np to tuples t and s such that

t.id=s.id is not in Γ but is verified during the computation.

(2) To avoid checking the same valuations repeatably, we

maintain a set H of dependencies among id and ML predicates.

where a dependency is in the form of l1∧ l2∧ . . .∧ ln → l, and

l and li (i ∈ [1, n]) are either id predicates or ML predicates.

Intuitively, a dependency encodes that whenever all predicates

l1, l2, . . . , and ln are valid, predicate l has to be enforced. We

do not consider predicates t.A = s.B and t.A = c since their

validations do not change during the recursive process.

We maintain H of a bounded size. (a) We use a predefined

constant K to bound the number of dependencies in H; here

K is determined by the available memory; and (b) whenever

a predicate l is validated, we remove all dependencies l1∧ l2∧
. . .∧ ln→l from H, which will no longer be checked later on.

(3) We define an equivalence relation Eid of matches in Γ
to cope with the transitivity of id predicates. That is, for each

tuple t in D we define an equivalence class [t.id]Eid
, containing

all tuples s such that t.id = s.id can be deduced from Γ.

Algorithm. Using these structures, we develop Match in

Fig. 3. Given a dataset D and a set Σ of MRLs, Match
iteratively deduces a set Γ of matches from D using Σ. It first

initializes Γ with pairs (t.id, t.id) for all tuples t in D (line 1).

Input: a dataset D, set Σ of MRLs, set Γ of local matches,
a set H of dependencies and a set ΔΓ of updates to Γ.

Output: A set ΔΓ′ (resp. ΔH) of updates to Γ ∪ΔΓ (resp. H).
1. Eid := ConstructEq(Γ); ΔΓ′ := ∅; ΔH = ∅;
2. for each l1 ∧ . . . ∧ ln → l in H s.t. li ∈ Eid for all i ∈ [1, n] do
3. add l to ΔΓ′; remove all l′1 ∧ . . . ∧ l′m → l from H;
4. for each (t1, t2) ∈ D ×D s.t. lt = (t1.id = t2.id) �∈ Eid do
5. if ∃ h and ϕ = X → l s.t. h(l) = lt ∧ h(X) ∩ΔΓ �= ∅ then
6. add l to ΔΓ′;
7. else extend the set ΔH of dependencies;
8. return (ΔΓ′,ΔH).

Fig. 4. Algorithm IncDeduce

It then builds the auxiliary structures mentioned above, and

deduces matches in Γ and dependencies in H in one round

by using procedure Deduce (line 2, see below). After this,

it iteratively and incrementally extends Γ using rules in Σ
and new matches in Γ via procedure IncDeduce (lines 4-6). It

terminates when no new match can be deduced (line 4).

Procedure Deduce. Deduce first constructs inverted indices for

predicates t.A=c and t.A = s.B. Then for each ϕ=X→l in

Σ and each valuation h of ϕ in D, it checks whether h|=l, i.e.,
h(l) can be validated, where h(l) is either (h(t1).id, h(t2).id)
or M(h(t1)[Ā], h(t2)[B̄]). If so, it adds h(l) to Γ; otherwise,

it adds dependency l1 ∧ l2 ∧ . . . ∧ ln→l to H if there is still

space in H, and builds inverted indices for l1, . . . , ln and l.

Procedure IncDeduce. As shown in Fig. 4, IncDeduce incre-

mentally extends Γ by using an update-driven strategy. It first

constructs the equivalence relation Eid (line 1). It then deduces

new matches using H and Eid (lines 2-3), i.e., for a dependency

l1∧l2∧. . .∧ln→l in H, if each li (i∈[1, n]) has been validated

in Eid, then it adds l to a set ΔΓ′ of updates, and changes H
accordingly. After that it extends ΔΓ′ by inspecting only val-

uations that involve new matches in ΔΓ (updated-driven; lines

4-7). For each unverified id or ML predicate lt �∈Eid, it checks

whether there exist a rule ϕ=X→l and a valuation h of ϕ in D
such that h|=X , h(l)=lt and h(X) involves at least one match

in ΔΓ (i.e., h(X)∩ΔΓ �=∅); if so, it adds lt to ΔΓ′; otherwise,

it updates the set ΔH of new dependencies; this can be done

using inverted indices constructed for id and ML predicates.

IncDeduce iterates until no new matches are found.

Analysis. The correctness follows from Theorem 1. Its runtime,

denoted by TMatch(D,Σ), is in O(||Σ||2(|Σ| + 1)|D||Σ|+2).
Indeed, (1) there exist at most O(||Σ||(|Σ|+1)|D|2) many

matches; and (2) Match deduces matches by checking the

existence of valuations of Σ in D, which is in O(||Σ|||D||Σ|).

Remark. We can also extend IncDeduce to handle updates

ΔD. Given ΔD, it inspects valuations of MRLs that involve

changes, and recursively propagates changes to other matches.

We can verify that it only checks affected areas. With the

update strategy we can also incrementally compute partitions.

B. Parallel Algorithm DMatch
Before presenting parallel algorithm DMatch, we first re-

view the notion of parallel scalability [47], which is widely

used to characterize the effectiveness of parallel algorithms.

Parallel scalability. A parallel algorithm Ap for deep and

collective ER is parallelly scalable relative to the sequential

2067

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on May 20,2023 at 08:40:33 UTC from IEEE Xplore. Restrictions apply.

Match if it is in O(tMatch(D,Σ)
n) time, where tMatch(D,Σ) is the

runtime of Match, and n is the number of processors used.

Intuitively, a parallelly scalable Ap “linearly” reduces the

cost when n increases. Hence a parallelly scalable algorithm

is able to scale with large D by adding processors as needed.

The main result of this section is the following.

Theorem 7: There exists a parallel algorithm DMatch that is
parallelly scalable relative to Match. �

As a proof of Theorem 7, we next develop DMatch, and

show that DMatch is parallelly scalable relative to Match.

Algorithm. Given fragments W1, . . . ,Wn partitioned by algo-

rithm HyPart (Section IV), DMatch first uses an algorithm A
to compute local matches in Wi in parallel; it then iteratively

runs an algorithm AΔ to incrementally deduce matches in re-

sponse to new matches from other workers (see Section III-B).

(1) Partial evaluation A. Algorithm A is a simple extension

of the sequential procedure Deduce; it is run at all workers

in parallel. At the end of A, each worker Pi sends deduced

matches (t.id, s.id) and M(t[Ā], s[B̄]) to master P0 such that

t or s also resides at other workers (in other fragments).

(2) Incremental computation AΔ. Algorithm AΔ is an exten-

sion of the sequential procedure IncDeduce with the following:

(a) when receiving messages from other workers, master P0

first takes union of all received matches; then P0 routes those

matches to workers Pi that contain a tuple in these matches;

(b) these matches are treated as update ΔΓ to Γ; and (c) when

AΔ is done with a round of computation, it sends newly-

deduced local matches to other workers just like in A above.

Remark. Algorithms A and AΔ can be implemented by

extending Deduce and IncDeduce because (a) fragments are

generated via HyPart; hence matches can be deduced using

only local data, and it suffices to exchange newly deduced ids

or ML predicates (Lemma 6); and moreover, (b) IncDeduce
follows an update-driven strategy to incrementally compute Γ.

Example 6: Continuing with Examples 3 and 5, assume that

dataset D in Example 1 is partitioned via HyPart into 2 frag-

ments W1 and W2. Then parallel ER is conducted as follows.

(1) Algorithm A first conducts local matching and constructs

the set H of dependencies, at all workers in parallel. As shown

in Fig. 5(1), (a) it identifies t2.id=t3.id and t12.id=t13.id in

W1 and t9.id=t10.id in W2, as marked by dashed circles.

(b) For t1.id=t3.id, it finds that it relies on t9.id=t10.id and

t12.id=t13.id; since t9.id=t10.id is not yet identified in W1, it

cannot deduce t1.id=t3.id. So it adds dependency t9.id=t10.id
→t1.id=t3.id to H (marked by an arrow in Fig. 5(1)).

When A terminates, match t9.id = t10.id is sent from W2

to W1. No match is sent from W1 to W2 since the matches

found in W1 do not involve tuples residing in W2.

(2) After receiving t9.id=t10.id, incremental algorithm AΔ

continues to deduce other matches in W1. Using dependency

t9.id=t10.id→t1.id=t3.id in H, it can identify t1.id=t3.id, and

merge the equivalence classes containing t1 and t2 (i.e., {t1}

Fig. 5. The constructed hypergraphs G1 and G2

and {t2, t3}), from which we can deduce t1.id=t2.id. Mean-

while, it removes t9.id=t10.id→(t1.id=t3.id) from H. After

that no more match can be deduced in W1, and AΔ terminates.

(3) At this point, no message is exchanged, and the process

terminates for the same reason as given in Example 3. �

Correctness. Algorithm DMatch is correct.

Proposition 8: Given a set Σ of MRLs and a partition
W1, . . . ,Wn of a dataset D via HyPart, algorithm DMatch
correctly conducts deep and collective ER. �

Proof sketch: We show that (1) by induction on chase steps,

each match deduced by the chase can be deduced by A and

AΔ; and (2) by induction on supersteps of A and AΔ, each

match deduced by A and AΔ can be deduced by the chase. �

Parallel scalability. Intuitively, DMatch is parallelly scalable

because (a) checking D |= Σ can be done locally by parti-

tioning D via algorithm HyPart (Lemma 6); and (b) only new

deduced matches are transmitted among fragments.

Proof sketch of Theorem 7. Since the sequential algorithm

Match is in O(||Σ||2(|Σ|+1)|D||Σ|+2) time (see Section V-A),

we show that DMatch is in O(||Σ||2(|Σ|+1)|D||Σ|+2

n) time. In-

deed, (1) A runs only once, and takes O(||Σ||2(|Σ|+1)(|D|)|Σ|+2

n)
time, since D is evenly partitioned using HC and skewness

reduction [32], [18] (Section IV); (2) the total runtime of

AΔ is also bounded by O(||Σ||2(|Σ|+1)|D||Σ|+2

n), since (a) AΔ

adopts an update-driven approach, (b) there exist at most

O(||Σ||(|Σ| + 1)|D|2) many updates, and (c) for each update,

AΔ runs in O(||Σ|||D||Σ|

n) time; and (3) the communication cost

is bounded by O(||Σ||(|Σ|+1)|D|2), since only newly deduced

matches are exchanged among workers. Hence DMatch is in

O(||Σ||(|Σ|+1)|D|2 ||Σ|||D||Σ|

n)≤O(||Σ||2(|Σ|+1)|D||Σ|+2

n) time. �

VI. EXPERIMENTAL STUDY

Using real-life and synthetic data, we conducted three sets

of experiments to evaluate the (1) accuracy, (2) efficiency, (3)

(parallel) scalability of algorithm DMatch. We also conducted

a case study to exemplify effective MRLs from real-life data.

Experimental setup. We start with the experimental setting.

Datasets. We used five real-life datasets. (a) IMDB, a movie

dataset with 1.5+M tuples [24]; (b) DBLP, a bibliographic

dataset with 5k tuples and 4 attributes [2]. (c) Movie, movies

and directors [24] with 5 tables, 22 attributes and 1+M tuples.

(d) Songs, a dataset of musics and artists with 2+M tuples

and 8 attributes [24]. (e) TFACC, a dataset of Ministry of

Transport [1] with 19 tables, 113 attributes and 480+M tuples.

2068

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on May 20,2023 at 08:40:33 UTC from IEEE Xplore. Restrictions apply.

We also generated synthetic datasets TPCH using TPCH-

dbgen [4], with 30M tuples, 8 relations and 61 attributes.

Ground truth and noises. IMDB, DBLP, Movie and Songs
have 270942, 2225, 14989 and 90581 tuple pairs labeled as

matches and non-matches, which were treated as ground truth.

For TFACC and TPCH without labeled data, we assumed

that they are correct (i.e., no duplicate exists in TFACC and

TPCH [32]), and duplicated tuples randomly, controlled by the

number Dup of duplicates. The unit of Dup is million tuples.

Measurements. The accuracy was measured in F-Measure =

2 × Precision × Recall/(Precision + Recall). Precision (resp.

Recall) is the ratio of deduced true matches included in the

ground truth to all deduced matches (resp. the ground truth).

ML classifiers. We adopted two existing bi-variable ML mod-

els as predicates in MRLs: supervised ER model DeepER [25]

and semantic similarity detection model fasttext [19].

MRLs. We discovered 10, 10, 10, 10, 30 and 75 MRLs from

IMDB, DBLP, Movie, Songs, TFACC and TPCH, respec-

tively, by extending the algorithm of [23] for discovering

denial constraints (denoted by DCs); DCs have the form of

∀t1, . . . , tm¬(P1∧ . . .∧Pn), stating that for each valuation of

tuple variables t1, . . . , tm, one of predicates P1, . . . , Pn does

not hold. Given a database D, the algorithm of [23] discovers

DCs as follows: (1) it first builds a predicate space P and

prepares an evidence set for D, which consists of a set E(t,s)

of predicates in P for every tuple pair (t, s) such that (t, s)
satisfies all predicates in E(t,s); (2) it then generates DCs by

computing minimal set covers of the evident set; and (3) it

finally checks the support/confidence of DCs, and returns DCs
that have support/confidence above predefined bounds.

We can extend the algorithm to mine MRLs, since MRLs
can be rewritten as ¬(X∧¬l) by De Morgan’s law, in the form

of DCs. However, we need to address the following: (1) MRLs
support multiple tuple variables, while the algorithm of [23]

only discovers bi-variable DCs. To cope with this, we built a

lattice for tuple variables, and followed the lattice to construct

tuple variables in MRLs [59]; and (2) MRLs contain ML

predicates; to support ML predicates, (a) we first collected can-

didate ML models, e.g., DeepER [25] for ER and fasttext [19]

for semantic similarity checking; and (b) we uniformly picked

equality and ML predicates when constructing the evidence

set; i.e., for any two tuples t and s, we treated ML predicates

M(t[Ā], s[B̄]) in the same way as t.A=s.B, and added them

to the evident set for tuple pair (t, s) if M(t[Ā], s[B̄]) returns

true. The rest is the same as the algorithm of [23] for DCs.

Baselines. We implemented the following algorithms, all in

C++. (1) DMatch (Section V); (2) its variant DMatchnoMQO

without MQO technique; (3) DMatchC and (4) DMatchD,

two variants of DMatch that conduct collective ER and deep

ER only, respectively; specifically, DMatchC uses only MRLs
without id predicates in preconditions; and DMatchD uses

only MRLs with at most 4 tuple variables, since real-life data

quality rules usually use at most 3 tuple variables [32].

We also compared with 8 baselines: (5) ERBlox [12] that

IMDB ACM-DBLP Movie Songs
F T(sec.) F T F T F T

DeepMa. 0.71 - 0.92 - 0.99 - 0.82 -
JedAI 0.97 - 0.88 - 0.44 - 0.38 -

ERBlox 0.91 - 0.66 - 0.37 - 0.25 -
DeepER 0.71 - 0.64 - 0.47 - 0.66 -

Ditto 0.79 6741.2 0.98 10.36 0.66 648.83 0.99 670.9
DisDedup 0.67 534 0.82 12.3 0.9 2485 0.16 45.6
Dedoop 0.53 ∗ 0.19 ∗ 0.65 ∗ 0.65 ∗

SparkER 0.66 393 0.77 22.7 0.03 46.132 0.09 17.9
DMatch 0.97 387 0.96 3.48 0.99 271 0.98 3.68

TABLE V
ACCURACY

exploits MDs rules and machine learning for ER; (6) Deep-

Matcher [43] that applies deep learning to ER; (7) DeepER

[25], an ML method that uses LSH for blocking and adopts

LSTM to detect duplication; (8) Ditto [48], an ER system

that adopts pre-trained language models to capture the context

of entities; (9) JedAI [53], a rule-based tool that focuses on

non-learning and structure-agnostic ER; (10) Dedoop [45],

a parallel MD-based deduplication method in Hadoop; (11)

SparkER [35] that implements both schema-agnostic and Blast

meta-blocking approaches [60] in Spark; and (12) DisDedup

[22] that is similar to Dedoop but minimizes the maximum

workload across all workers in Spark environment.

For ML models such as DeepMatcher and DeepER, datasets

are split into training data and testing data in the ratio 2:1. We

configured JedAI with the recommended parameters of [53],

and DisDedup with the same configuration of [3]. Blocking

and weight average matching are used in Dedoop [45].

Environment. We conducted the experiments on a HPC cluster

of up to 32 machines, each powered with 2.40GHz Intel Xeon

Gold CPU, 4TB Intel P4600 SSD and 128GB memory. These

machines are connected by 100 Mbps links. By default we

used n=32 machines and all discovered MRLs unless stated

otherwise. Experiments with Dedoop were conducted on other

machines, due to hardware constraints of the cluster; we only

report the accuracy of Dedoop. Each experiment was repeated

for 5 times, and the average is reported. We only show the

results on some datasets; results on the others are consistent.

Experimental results. We report our findings as follows.

Exp-1: Accuracy. We first tested the accuracy of the methods.

(1) On datasets with ground truth (i.e., IMDB, ACM-DBLP,

Movie and Songs), on average DMatch outperforms SparkER,

Dedoop, DisDedup, DeepER, ERBlox and JedAI by 58.75%,

47%, 33.74%, 35.5%, 42.75% and 30.75%, respectively, as

shown in Table V. It is 26% and 33% better than DeepMatcher
on IMDB and Ditto on Movie, respectively. This is because

DMatch combines rule-based and ML-based methods, while

others are based on either ML models (DeepER, DisDedup,

DeepMatcher, Ditto) or logic rules (Dedoop, JedAI) alone.

(2) Fixing Dup=0.5, Figures 6(a)-(b) report results on TPCH
and TFACC, respectively. As shown there, the F-measure of

DMatch is above 0.86. On average, it beats Dedoop, DisDedup

and SparkER by 39.9%, 57.24% and 64.6%, respectively. This

is because some duplicates can only be detected recursively,

not by baselines; we only report the results of distributed

baselines, since the others cannot terminate in 4 hours.

2069

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on May 20,2023 at 08:40:33 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Performance evaluation

(3) Deep and collective ER outperforms both deep ER and

collective ER in accuracy. As shown in Figure 6(a), the

F-measure of DMatch is 0.92, which is 33% and 23% higher

than DMatchC and DMatchD, respectively, on TPCH; the re-

sults on TFACC are consistent (see Figure 6(b)). This justifies

the need for deep and collective ER. Note that while Dedoop

and Disdedup perform better than DMatchC and DMatchD
(Figure 6(a)), they may still miss duplicates that can only be

detected recursively. This justifies the need for DMatch that

unifies deep ER and collective ER, which outperforms Dedoop

and Disdedup (see Figure 6(a)). DMatchC and DMatchD may

miss matches since DMatchC cannot detect ER recursively,

and DMatchD restricts the number of relation atoms.

(4) Varying Dup from 0.1 to 0.5, we report its impact on the

accuracy of DMatch. As shown in Table VI, (1) on TPCH the

accuracy of DMatch slightly decreases with larger Dup, when

tuples are duplicated randomly; and (2) the discovered MRLs
can identify almost all added duplicates, e.g., when Dup=0.5,

the accuracy of DMatch reaches 0.8669 on TPCH.

(5) Fixing Dup = 0.5, we also tested ER on a universal

relation by denormalizing datasets; here we only reported the

results on TPCH; the results on other datasets are consistent.

On TPCH, we combined tables via foreign keys; e.g., we

joined tables Parts and Supplier using foreign keys PartKey
and SuppKey of table ParSupp; denote by TPCHd the joined

dataset. Over TPCHd, the accuracy of SparkER and DisDedup

is 28% and 83%, respectively. We found that (a) denormalizing

the tables incurs heavy cost, e.g., it takes 1517.44 seconds

and 134 GB of memory to denormalize TPCHd that has 30M

tuples; (b) DMatch is consistently more accurate than all the

baselines (the accuracy of DMatch on TPCH is above 0.86);

as remarked earlier, some duplicates can only be detected via

recursions, and it is hard to decide the number of joins needed

for denormalizing in order to catch such duplicates. (c) As an

example to justify the need for recursion, in TPCH there exist

duplicate orders that are handled by the same clerk in the

Dup 0.1 0.2 0.3 0.4 0.5
TPCH 0.8874 0.8845 0.8760 0.8705 0.8669

TFACC 0.8542 0.8502 0.8565 0.8501 0.8606

TABLE VI
ACCURACY OF DMatch ON TPCH AND TFACC

same day but are placed by two customers who have the same

name but different nationalities. To find that the two orders are

actually the same, (1) we first identified countries “Argenztina”

and “Argwentisna” in table nation; (b) based on this result we

identified the two customers in the next round of recursion;

and (c) we then concluded that the two orders are the same in

the 3rd round of deep ER (recursion), since they buy the same

products, and are placed by the same customer and handled

by the same clerk. This process needs 3 levels of recursion.

Exp-2: Efficiency. We evaluated the efficiency of DMatch.

Partitioning. We tested the partitioning time (i.e., the running

time of HyPart) and the ER time (i.e., the time of DMatch) by

varying n from 4 to 32. We found the following: (1) the ER

time dominates overall cost. When n=4, |ϕ|=8 and ||Σ||=10,

on TPCH it takes 18.19s to partition, and 254.73s to conduct

ER. (2) When n is varied from 4 to 32, the partitioning time

decreases (from 18.19s to 11.49s), and it accounts for at most

15.32% of the ER time. Thus in the following we only report

the ER time, i.e., the running time of DMatch.

Varying Dup. Fixing n = 16, we varied Dup from 0.1 to 0.5,

and tested the impact of the number of duplicates on the effi-

ciency of DMatch. As reported in Figures 6(c)-(d) on TPCH
and TFACC, respectively, (1) all algorithms take longer when

Dup gets larger, as expected. (2) On TPCH, DMatch is 2.6

and 2.3 times faster than SparkER and DisDedup, respectively.

The other baselines cannot terminate in 4 hours (Table V);

as mentioned above, we did not report the running time of

Dedoop, and marked it by a star ∗. These verify that while

deep and collective ER correlates data from multiple relations

and is recursively conducted, it is even faster than the baselines

by partitioning data with HyPart and reducing the cost with

2070

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on May 20,2023 at 08:40:33 UTC from IEEE Xplore. Restrictions apply.

MQO, while substantially improving the accuracy. Note that

DisDedup ran out of memory on TFACC when Dup = 0.5.

Varying |ϕ|. We also tested the impact of the average number

|ϕ| of predicates in each MRL ϕ. Fixing n = 16 and the

number ||Σ|| of MRLs as 10, we varied |ϕ| from 2 to 10

over TPCH (resp. from 4 to 8 over TFACC). As shown in

Figures 6(e)-6(f) on TPCH and TFACC, respectively, (1)

DMatch takes longer with larger MRLs, as expected. (2)

DMatch is practical for real-life MRLs. When |ϕ|=8 it takes

216s on TFACC with 8+M tuples, which is the subset of

TFACC covered by the used rules. (3) On average DMatch
beats DMatchnoMQO by 35.9%. This validates the effectiveness

of the MQO technique, since the more predicates MRLs
contain, the more intermediate results these rules may share.

This verifies the effectiveness of our optimization techniques.

Varying ||Σ||. We next evaluated the impact of the number

||Σ|| of MRLs in Σ. Fixing n=16, we varied ||Σ|| from 30

to 75 for TPCH (resp. from 10 to 30 for TFACC) to evaluate

the efficiency of DMatch and DMatchnoMQO. As shown in

Figure 6(g)-6(h), (1) DMatch takes longer when given more

rules, as expected. (2) DMatch is faster than DMatchnoMQO.

When ||Σ||=75, DMatch outperforms DMatchnoMQO by 20%
on TFACC. This is because DMatch applies MQO and allows

different rules to share intermediate results.

Exp-3: Scalability. We further evaluated the scalability of

DMatch and DMatchnoMQO using TPCH and TFACC.

Varying n. Fixing ||Σ||=75 for TPCH (resp. ||Σ|| = 30 for

TFACC), we varied the number n of workers from 4 to 32.

As shown in Figures 6(i)-6(j), (a) DMatch and DMatchnoMQO

scale well. When n varies from 4 to 32, DMatch (resp.

DMatchnoMQO) is 3.56 (resp. 4.03) times faster on TPCH.

(b) DMatch works well on large datasets. When n = 32,

DMatch takes 187s to process TFACC with 8+M tuples. (c)

On average, DMatch outperforms DMatchnoMQO by 68% and

8% on TPCH and TFACC, respectively, by using MQO.

Synthetic data. We tested the scalability of DMatch on TPCH
by varying the scale factor from 0.05 to 1 and fixing n = 16.

As shown in Figure 6(k), (1) DMatch takes longer on larger

datasets; it takes 505s on TPCH when the scale factor is 1,

i.e., the entire TPCH; while DMatchnoMQO takes more than

607s. (2) On average, DMatch outperforms DMatchnoMQO by

58.5%. The results on TFACC are consistent (Figure 6(l)).

Exp-4: Case Study. Below we give 4 example MRLs that were

discovered from TPCH, DBLP and the data of our industry

partners. All these rules are defined across 2-3 tables and carry

4-8 relation atoms; and each carries both ML and id predicates.

These are beyond rules used in previous work for ER.

(1) ϕa: Parts(tp)∧Parts(t′p)∧Partsupp(tps)∧Partsupp(t′ps)∧
Supplier(ts) ∧ Supplier(t′s) ∧ tp.partkey = tps.partkey
∧ tps.suppkey = ts.suppkey ∧ t′ps.partkey = t′p.partkey
∧ t′s.suppkey = t′ps.suppkey∧ ts.id = t′s.id∧ tps.supplycost =
t′ps.supplycost ∧M(tp.desc, t

′
p.desc)→tp.id = t′p.id. The rule

identifies two parts if they share the same supplier and supply

cost, and bear similar descriptions (by ML). It plugs in an

ML predicate for checking similarity of long text data.

(2) ϕb : Orders(to) ∧ Orders(t′o) ∧ Cust(tc) ∧ Cust(t′c) ∧
Lineitem(tl) ∧ Lineitem(t′l) ∧ to.custkey = tc.custkey ∧
to.orderkey = tl.orderkey ∧ t′o.custkey = t′c.custkey ∧
t′o.orderkey = t′l.orderkey ∧ to.totalprice = t′o.totalprice
∧ to.orderdate = t′o.orderdate ∧ tc.id=t′c.id ∧ tl.partkey =
t′l.partkey ∧M(to.clerkname, t′o.clerkname) → to.id = t′o.id.

It catches two orders as duplicates if they have the same

totalprice, orderdate, clerk, customers and partkey of items.

(3) ϕc : Article Author(t1)∧Article Author(t2)∧Article(t3)∧
Article(t4)∧Author(t5)∧Author(t6)∧t1.article id=t3.article id
∧t2.article id = t4.article id ∧ t1.author id = t5.author id∧
t2.author id = t6.author id ∧ Ml(t5, t6)∧t3.title=t4.title∧
t3.booktitle=t4.booktitle∧t3.year=t4.year∧t3.issue=t4.issue
∧Ma(t3.abstract, t4.abstract)→t3.id=t4.id. It identifies two

papers if they have the same title, booktitle, year and issue,

and similar abstractions, and if they have a common author.

We can verify that all the preconditions in ϕc are necessary.

(4) ϕd : Comment(t1)∧Comment(t2)∧User(t3)∧User(t4)∧
t1.item id=t2.item id∧t1.user id=t3.user id∧t2.user id =
t4.user id ∧ t1.score = 0 ∧ t2.score = 0 ∧ t1.review =
t2.review ∧ t1.prod name = “Disney” ∧ M(t3.user name,
t4.user name)∧M(t3.address, t4.address) → Ml(t3, t4). It

explains why an ML model Ml identifies two users: Ml iden-

tifies t3 and t4 as the same person if they have similar names

and similar addresses (determined via M) and give an unusual

low rating 0 and same review to a popular place like Disney.

Summary We find the following. (a) By supporting deep and

collective ER, DMatch is 38% more accurate on average than

all competitors over all datasets. (b) DMatch is 23% and

38% more accurate than ML-based and rule-based methods

on real-life datasets, and it beats deep ER and collective ER

by 21% and 32%, respectively. (c) DMatch is feasible on large

dataset; it takes 505s on TPCH with 8 tables and 30M tuples,

using 16 workers. On average it is 4.35 times faster than all

the baselines on TPCH. (d) DMatch is parallelly scalable;

when the number of workers increases from 4 to 32, it is on

average 3.56 times faster. (e) The MQO technique improves

the performance of DMatch by 43.4% on average.

VII. CONCLUSION

We have studied deep and collective ER with MRLs that

may embed ML predicates, to improve the accuracy of entity

resolution. We have settled its complexity, modeled it as a

fixpoint computation, and provided optimization techniques to

accelerate the computation. Our experimental study has shown

that deep and collective ER is promising in practice.
One topic for future work is to extend MRLs to soft rules

that return the probability of ER. Another topic is to develop

incremental algorithm for deep and collective ER.

ACKNOWLEDGMENT

Deng and Lu are supported in part by National Key R&D

Program of China (2021ZD0113903) and SKLSDE-2021ZX-

11. Fan is supported in part by ERC 652976 and Royal Society

Wolfson Research Merit Award WRM/R1/180014. Ping Lu is

the corresponding author of the paper.

2071

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on May 20,2023 at 08:40:33 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Mot tests and results, 2020. https://data.gov.uk/dataset/e3939ef8-30c7-
4ca8-9c7c-ad9475cc9b2f/anonymised-mot-tests-and-results.

[2] Benchmark datasets for entity resolution, 2021.
https://dbs.uni-leipzig.de/de/research/projects/.

[3] Sparklyclearn. https://github.com/david-siqi-liu/sparklyclean, 2021.
[4] TPCH. http://www.tpc.org/tpch/, 2021.
[5] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.

Addison-Wesley, 1995.
[6] F. N. Afrati and J. D. Ullman. Optimizing joins in a map-reduce

environment. In EDBT, pages 99–110, 2010.
[7] G. Aggarwal, R. Motwani, and A. Zhu. The load rebalancing problem.

J. Algorithms, 60(1):42–59, 2006.
[8] Y. Altowim and S. Mehrotra. Parallel progressive approach to entity

resolution using MapReduce. In ICDE, pages 909–920, 2017.
[9] A. Arasu, M. Götz, and R. Kaushik. On active learning of record

matching packages. In SIGMOD, page 783–794, 2010.
[10] A. Arasu, C. Ré, and D. Suciu. Large-scale deduplication with

constraints using Dedupalog. In ICDE, pages 952–963, 2009.
[11] Z. Bahmani and L. E. Bertossi. Enforcing relational matching depen-

dencies with Datalog for entity resolution. In FLAIRS, 2017.
[12] Z. Bahmani, L. E. Bertossi, and N. Vasiloglou. ERBlox: Combining

matching dependencies with machine learning for entity resolution.
IJAR, 83:118–141, 2017.

[13] P. Beame, P. Koutris, and D. Suciu. Communication steps for parallel
query processing. In PODS, pages 273–284, 2013.

[14] P. Beame, P. Koutris, and D. Suciu. Skew in parallel query processing.
In PODS, pages 212–223, 2014.

[15] I. Beltagy, K. Erk, and R. J. Mooney. Probabilistic soft logic for semantic
textual similarity. In ACL, pages 1210–1219, 2014.

[16] L. E. Bertossi, S. Kolahi, and L. V. S. Lakshmanan. Data cleaning and
query answering with matching dependencies and matching functions.
Theory Comput. Syst., 52(3):441–482, 2013.

[17] I. Bhattacharya and L. Getoor. Collective entity resolution in relational
data. TKDD, 1(1), 2007.

[18] B. Bhattarai, H. Liu, and H. H. Huang. CECI: compact embedding
cluster index for scalable subgraph matching. In SIGMOD, 2019.

[19] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word
vectors with subword information. TACL, 5:135–146, 2017.

[20] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive
queries in relational data bases. In STOC, page 77–90, 1977.

[21] C. Chekuri and A. Rajaraman. Conjunctive query containment revisited.
In ICDT, pages 56–70, 1997.

[22] X. Chu, I. F. Ilyas, and P. Koutris. Distributed data deduplication.
PVLDB, 9(11):864–875, 2016.

[23] X. Chu, I. F. Ilyas, and P. Papotti. Discovering denial constraints.
PVLDB, 6(13):1498–1509, 2013.

[24] S. Das, A. Doan, P. S. G. C., C. Gokhale, P. Konda, Y. Govind, and
D. Paulsen. The Magellan data repository.
https://sites.google.com/site/anhaidgroup/projects/data.

[25] M. Ebraheem, S. Thirumuruganathan, S. R. Joty, M. Ouzzani, and
N. Tang. Distributed representations of tuples for entity resolution.
PVLDB, 11(11):1454–1467, 2018.

[26] V. Efthymiou, G. Papadakis, G. Papastefanatos, K. Stefanidis, and
T. Palpanas. Parallel meta-blocking for scaling entity resolution over
big heterogeneous data. Inf. Syst., 65:137–157, 2017.

[27] V. Efthymiou, G. Papadakis, K. Stefanidis, and V. Christophides. Mi-
noanER: Schema-agnostic, non-iterative, massively parallel resolution
of Web entities. In EDBT, pages 373–384, 2019.

[28] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate record
detection: A survey. TKDE, 19(1):1–16, 2007.

[29] W. Fan. Dependencies revisited for improving data quality. In PODS,
page 159–170, 2008.

[30] W. Fan, H. Gao, X. Jia, J. Li, and S. Ma. Dynamic constraints for record
matching. VLDB J., 20(4):495–520, 2011.

[31] W. Fan, P. Lu, and C. Tian. Unifying logic rules and machine learning
for entity enhancing. Science China Information Sciences, 2020.

[32] W. Fan, C. Tian, Y. Wang, and Q. Yin. Parallel discrepancy detection
and incremental detection. PVLDB, 14(8):1351–1364, 2021.

[33] W. Fan, W. Yu, J. Xu, J. Zhou, X. Luo, Q. Yin, P. Lu, Y. Cao, and
R. Xu. Parallelizing sequential graph computations. TODS, 2018.

[34] J. R. Finkel, T. Grenager, and C. D. Manning. Incorporating non-local
information into information extraction systems by gibbs sampling. In
ACL, pages 363–370, 2005.

[35] L. Gagliardelli, G. Simonini, D. Beneventano, and S. Bergamaschi.
SparkER: Scaling Entity Resolution in Spark. In EDBT, 2019.

[36] M. Garey and D. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[37] M. Grohe, T. Schwentick, and L. Segoufin. When is the evaluation of
conjunctive queries tractable? In STOC, pages 657–666, 2001.

[38] S. Guo, X. L. Dong, D. Srivastava, and R. Zajac. Record linkage with
uniqueness constraints and erroneous values. PVLDB, 2010.

[39] M. A. Hernndez and S. J. Stolfo. The merge/purge problem for large
databases. In SIGMOD, page 127–138, 1995.

[40] R. Isele and C. Bizer. Learning expressive linkage rules using genetic
programming. PVLDB, 5(11):1638–1649, 2012.

[41] A. Jurek, J. Hong, Y. Chi, and W. Liu. A novel ensemble learning
approach to unsupervised record linkage. Inf. Syst., 71:40–54, 2017.

[42] A. Jurek and D. P. It pays to be certain: Unsupervised record linkage
via ambiguity minimization. In PAKDD, pages 177–190, 2018.

[43] J. Kasai, K. Qian, S. Gurajada, Y. Li, and L. Popa. Low-resource deep
entity resolution with transfer and active learning. In ACL, 2019.

[44] T. Kathuria and S. Sudarshan. Efficient and provable multi-query
optimization. In PODS, pages 53–67, 2017.

[45] L. Kolb, A. Thor, and E. Rahm. Dedoop: Efficient deduplication with
hadoop. PVLDB, pages 1878–1881, 2012.

[46] l. Koumarelas, T. Papenbrock, and F. Naumann. MDedup: Duplicate
detection with matching dependencies. PVLDB, page 712–725, 2020.

[47] C. P. Kruskal, L. Rudolph, and M. Snir. A complexity theory of efficient
parallel algorithms. Theor. Comput. Sci., 71(1):95–132, 1990.

[48] Y. Li, J. Li, Y. Suhara, A. Doan, and W. Tan. Deep entity matching
with pre-trained language models. PVLDB, 14(1):50–60, 2020.

[49] A. McCallum, K. Nigam, and L. H. Ungar. Efficient clustering of high-
dimensional data sets with application to reference matching. In KDD,
pages 169–178, 2000.

[50] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R. Deep,
E. Arcaute, and V. Raghavendra. Deep learning for entity matching: A
design space exploration. In SIGMOD, page 19–34, 2018.

[51] G. Papadakis, D. Skoutas, E. Thanos, and T. Palpanas. Blocking and
filtering techniques for entity resolution: A survey. ACM Comput. Surv.,
53(2), 2020.

[52] G. Papadakis, J. Svirsky, A. Gal, and T. Palpanas. Comparative analysis
of approximate blocking techniques for entity resolution. PVLDB, 2016.

[53] G. Papadakis, L. Tsekouras, E. Thanos, G. Giannakopoulos, T. Palpanas,
and M. Koubarakis. The return of JedAI: End-to-end entity resolution for
structured and semi-structured data. PVLDB, pages 1950–1953, 2018.

[54] N. Peinelt, D. Nguyen, and M. Liakata. tBERT: Topic Models and BERT
Joining Forces for Semantic Similarity Detection. In ACL, 2020.

[55] K. Qian, L. Popa, and P. Sen. Active learning for large-scale entity
resolution. In CIKM, page 1379–1388, 2017.

[56] V. Rastogi, N. N. Dalvi, and M. N. Garofalakis. Large-scale collective
entity matching. PVLDB, 4(4):208–218, 2011.

[57] T. Rekatsinas, X. Chu, I. F. Ilyas, and C. Ré. Holoclean: Holistic data
repairs with probabilistic inference. PVLDB, 10(11):1190–1201, 2017.

[58] F. Sadri and J. D. Ullman. The interaction between functional depen-
dencies and template dependencies. In SIGMOD, 1980.

[59] P. Schirmer, T. Papenbrock, I. K. Koumarelas, and F. Naumann. Efficient
discovery of matching dependencies. TODS, 45(3):13:1–13:33, 2020.

[60] G. Simonini, S. Bergamaschi, and H. V. Jagadish. BLAST: a loosely
schema-aware meta-blocking approach for entity resolution. PVLDB,
9(12):1173–1184, 2016.

[61] G. Simonini, L. Gagliardelli, S. Bergamaschi, and H. V. Jagadish.
Scaling entity resolution: A loosely schema-aware approach. Inf. Syst.,
83:145–165, 2019.

[62] Y. Tao. Massively parallel entity matching with linear classification in
low dimensional space. In ICDT, 2018.

[63] L. G. Valiant. A bridging model for parallel computation. Commun.
ACM, 33(8):103–111, 1990.

[64] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin. Attention is all you need. In NIPS, 2017.

[65] S. E. Whang and H. Garcia-Molina. Joint entity resolution on multiple
datasets. VLDB J., 22(6):773–795, 2013.

[66] S. E. Whang, D. Menestrina, G. Koutrika, M. Theobald, and H. Garcia-
Molina. Entity resolution with iterative blocking. In SIGMOD, 2009.

[67] D. Zhang, L. Guo, X. He, J. Shao, S. Wu, and H. T. Shen. A graph-
theoretic fusion framework for unsupervised entity resolution. In ICDE.

[68] P. Zhang, S. Bin, and G. Sun. Electronic word-of-mouth marketing in
e-commerce based on online product reviews. IJUNESST, 8(8), 2015.

2072

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on May 20,2023 at 08:40:33 UTC from IEEE Xplore. Restrictions apply.

