
Deep Learning Service for Efficient Data
Distribution Aware Sorting

Xiaoke Zhu†
Beihang University

China
zhuxk@buaa.edu.cn

Qi Zhang
Meta Platforms

USA
qizhang@meta.com

Wei Zhou*
Yunnan University

China
zwei@ynu.edu.cn

Ling Liu
Georgia Institute of Technology

USA
ling.liu@cc.gatech.edu

Abstract—In this paper, we present a neural network-enabled
data distribution aware sorting method, coined as NN-sort. Our
approach explores the potential of developing deep learning
techniques to speed up large-scale sort operations, enabling data
distribution aware sorting as a deep learning service. Compared
to traditional pairwise comparison-based sorting algorithms,
which sort data elements by performing pairwise operations, NN-
sort leverages the neural network model to learn the data distri-
bution and uses it to map large-scale data elements into ordered
ones. Our experiments demonstrate the significant advantage of
using NN-sort. Measurements on both synthetic and real-world
datasets show that NN-sort yields 2.18× to 10× performance
improvement over traditional sorting algorithms.

I. INTRODUCTION

Sorting is a fundamental operation in the realm of big data,
powering everything from database systems [1] to bigdata
analysis [2]. As the scale of data continues to grow, traditional
sorting algorithms face increasing limitations in performance.
While methods such as Quick Sort family [3], Merge Sort
family [4], and Radix Sort family [5], [6] have long been re-
lied upon, their comparison-based and non-comparison-based
optimizations appear to be reaching its bottleneck.

Recent research [7]–[10] has extensively explored how deep
learning models can enhance the performance of traditional
big data systems and algorithms. For instance, Tim Kraska et
al. introduced a learned index [9] that leverages an empirical
cumulative distribution function (CDF) to improve the per-
formance of traditional data structures. They also proposed a
learned approach [10], [11] to improve sorting performance.

Their method, known as SageDB Sort, utilizes a learned
model to generate a roughly ordered state of elements by
predicting (mapping) the positions of elements, and then
refined it by a traditional sorting algorithm like Quick Sort.
However, this approach has limitations. Conflicts often arise
when converting the learned model’s output, such as multiple
elements being mapped to the same position, leading to
performance bottlenecks (see Section IV). Resolving these
conflicts (especially when numerous) can be time-consuming,
making it less efficient than traditional algorithms.

The question of how to design an effective deep learning-
based sorting algorithm remains unanswered. Specifically, key
issues include determining which type of neural network per-

†work done while author was with Yunnan University
*corresponding author

forms best for sorting, understanding the complexity of neural
network-based sorting, dealing with conflicts, and minimizing
operations such as data comparison and movement during the
sorting process.

To address these issues, this work presents NN-sort, a neural
network-based sorting algorithm designed to move beyond
traditional sorting paradigms. Instead of relying solely on com-
parisons or inherent data characteristics, NN-sort harnesses
the power of neural networks to create a data distribution-
aware sorting method. By training a model on historical data
to predict the sorted positions of new data, NN-sort offers
a novel approach that achieves efficient and scalable sorting
while incorporating an effective conflict-handling mechanism.

The architecture of NN-sort consists of three distinct phases:
the input phase, where data is transformed into neural network-
compatible vectors; the sorting phase, where a learned neural
network iteratively refines the data order; and the polish phase,
where traditional methods finalize the sorting (i.e., ensuring the
output is correct). This layered approach enables NN-sort to
handle large datasets efficiently, minimizing the computational
overhead from conflicts—a primary performance bottleneck
in SageDB Sort. Moreover, we systematically explored the
potential of NN-sort, discussed its complexity, performance,
and advantages over traditional algorithms. Through rigorous
experiments on both synthetic and real-world datasets, we
justify the effective of NN-sort.

The contributions of this paper are summarized as follows:
(a) we investigate the opportunities and challenges of enhanc-
ing traditional sorting processes by leveraging neural network-
based learning approaches; (b) we develop NN-sort, a novel
neural network-based sorting method that utilizes historical
data to train a data distribution-aware model. This trained
model performs high-performance sorting on incoming data
iteratively, with an additional touch-up process to ensure the
correctness of the final result. In contrast to state-of-the-art
learned sorting methods, e.g.,SageDB Sort, NN-sort scales
effectively by reducing conflicts during CDF mapping; (c)
we provide a formal analysis of NN-sort’s complexity using
a cost model that clarifies the intrinsic relationship between
model accuracy and sorting performance. (d) we evaluate NN-
sort’s performance on both synthetic and real-world datasets.
Experimental results demonstrate that NN-sort achieves up to
an order of magnitude speed-up in sorting time compared to

9.4

…

0.5

…
…

…
… …
…

10
15.2

…
…

…… 0.5

…
…

2.3

…

1

…
… …
…

8
13.3

…
…

…… 16.8

…
…

Input Phase

f

w

f

1O

… f

tO
…

…

quick
sort

Sorting Phase Polish Phase

tO1O

Roughly
ordered

(ordered)(unordered)

……Records Round(row_pos)

t2

w w

w

Roughly
ordered2O Roughly

ordered

1O

2O

tO

Output: A’
(ordered)

2O

Polish

Input data elements
（A[0], A[1], …, A[n‐1]）

Value

O
ut
 p
ut
 d
at
a
el
em

en
ts

（
A
’

[0
],
A
’

[1
],
…

, A
’

[n
‐1
]）

Value

1

Fig. 1: NN-sort architecture

state-of-the-art sorting algorithms.
The rest of the paper is organized as follows: the design of

NN-sort is presented in Section II. The complexity of NN-sort
is discussed in Section III. The experimental results are pre-
sented and analyzed in Section IV. Related work is reviewed
in Section V, and the paper is concluded in Section VI.

II. NEURAL NETWORK BASED SORT

In this section, we discuss the design of NN-sort, including
how to use a neural network model for effective sorting, as
well as how such a neural network model can be trained.

Challenges. Sorting involves mapping elements from an un-
sorted state to a sorted state. Rather than relying on traditional
comparison-based methods (e.g., Quick Sort), this mapping
can be achieved through a data distribution-aware model that
takes each element as input and returns its expected position
within the sorted array. Given an ideal function f and distinct
elements x, y ∈ A such that x < y, the function would ideally
satisfy f(x) < f(y). While such a ”magic” function may
not always hold perfectly, it can still accelerate sorting, with
greater accuracy leading to more effective acceleration. Before
discussing the methods, several challenges must be addressed
to ensure both effectiveness and accuracy. (1) first, for
correctness, the model must precisely reflect the order among
input data elements, producing results consistent with those
of traditional sorting algorithms. However, it is impossible to
have that function f , especially if we train the model just based
on samples from the input data; (2) second, for effectiveness,
the model ideally should sort large volumes of data in a single
pass. Achieving this requires a model to be both complex and
accurate enough to capture the exact order of all elements,
which can result in significant training cost and inference
cost. Thus, a balance between model accuracy and sorting
performance is crucial. (3) third, conflicts arise when multiple
input elements are mapped to the same output position, i.e.,
f(a) = f(b) where a, b ∈ A and a ̸= b. Effectively managing
these conflicts is crucial for both the correctness and efficiency
of the learned sorting approach. SageDB Sort addresses these
collisions using traditional sorting algorithms, such as Quick
Sort, which incurs computational overhead when collisions is

Procedure NN-sort
Input: A: the array of data elements
f : the learned model
m: the relaxation factor
ϵ the predefined iteration limit
τ the predefined threshold
Output: A′: the array of data elements after sorted
1. w ← translate(A)
2. init O ← ∅, i← 0
3. while 0 < i < ϵ and count(w) > τ do
4. init oi ← ∅, c← ∅
5. w_pos ← w.map(f)
6. for idx in count(w) do
7. pos ← round(w_pos[idx] ∗m)
8. if oi[pos] is empty do
9. oi[pos]← w[idx]
10. else
11. c.append(w[idx])
12. O.append(oi)
13. w ← c
14. ++i
15. QuickSort(w)
16. A′ ← polish(O,w)
17. Return A′

Fig. 2: Algorithm NN-sort

too large. That is to said, there is still room for improvement.

NN-sort Design. In response to these challenges, we designed
an iterative neural network-based sorting method. Unlike
SageDB Sort, which employs a complex model to sort data in
a single round, our approach utilizes a simpler model to sort
over multiple rounds. Each round generates a roughly sorted
array, with conflicts carried forward to the next iteration. This
process continues until the conflicts in that iteration fall below
a predefined threshold or a number of iterations is reached.
The final small conflict array is then sorted using a traditional
method like Quick Sort and merged with the roughly sorted
arrays. After a final traversal to ensure correctness, a fully

2

Procedure polish(O)
Input: O = {o1, o2, ...}: array of roughly sorted arrays.
w: strictly sorted array.
Output: A′: the array of data elements after sorted
1. A′ ← w
2. for oi ∈ O do
3. A′ ← InsertSort(A′, oi)
4. Return A′

Fig. 3: Algorithm polish

sorted result is obtained. The benefits are two folds: (1) using
a simpler model reduces both inference and training costs; (2)
the learned model can be applied repeatedly, avoiding direct
sorting of conflicting elements with traditional methods.

Figure 1 illustrates this approach, where the input array A
is sorted into A′. The process is divided into three phases:
Input, Sorting, and Polish. Figure 2 details the workflow of
NN-sort, with Line 1 addressing the input phase, Lines 2-15
covering the sorting phase, and Line 16 corresponding to the
polish phase.

Input Phase. The input phase prepares the data for the neural
network by encoding it appropriately, ensuring compatibility
for processing. For example, string-type data is converted into
ASCII values. This encoding step is crucial, as it standardizes
the data format and enables the neural network to interpret
and process a wide variety of input types, such as integers,
floating-point numbers, or categorical data, in a structured and
efficient manner. For simplicity, we denoted such operations
as w ← translate(A) (line 1, Figure 2).

Sorting Phase. In the sorting phase, a learned model f it-
eratively organizes unordered data into approximately sorted
arrays. First, the learned model f maps each element to its
expected position (line 5, Figure 2). Then, oi stores elements of
w based on their value in w pos, where i denotes the iteration
number. If a collision occurs in oi—where multiple elements
map to the same position—only the first element is stored
in oi, while subsequent elements are placed in a temporary
conflict array c (line 8-11, Figure 2). In the following iteration,
elements in c are reprocessed by learned model f (line 13,
Figure 3). This process continues until either a predefined
maximum number of iterations ϵ is reached or the size of
c drops below a threshold τ , at which point it is sorted using
a traditional algorithm.

It is worth mentioning that, each element in w pos rep-
resents the expected position of corresponding elements of
w within the final sorted array. Instead of using w pos[idx],
which is the direct output of f , we use round(w pos[idx]∗m),
a rounded value, to represent the position of w[idx]. The
reasons are two folds: (1) the outputs of f are decimals
while the positions need to be integers. (2) with relaxation
factor m the input data elements can be mapped into a larger
space, thereby reducing the number of conflicts. In addition,
all conflicting data elements are stored in a conflict array c and

1 6 31 38 60 81 88 37 92 3 91 32

3 37 91 32 59

1 3 6 31 32 37 38 59 60 81 88 91 92

32 31 6 60 38 37 3 59 88 92 911 81

<latexit sha1_base64="1b5EDj64PlsE9fy0UUpd52hcSO0=">AAAB6nicbZC5TgMxEIbHnCFc4ehoLBIkqmiXItARiQLKIMghJavI63gTK17vyvYihVUegYYChGipqXgSOkreBOcoIOGXLH36/xl5ZvxYcG0c5wstLC4tr6xm1rLrG5tb27md3ZqOEkVZlUYiUg2faCa4ZFXDjWCNWDES+oLV/f7FKK/fMaV5JG/NIGZeSLqSB5wSY62bQlBo5/JO0RkLz4M7hfz5x/335ft+WmnnPludiCYhk4YKonXTdWLjpUQZTgUbZluJZjGhfdJlTYuShEx76XjUIT6yTgcHkbJPGjx2f3ekJNR6EPq2MiSmp2ezkflf1kxMcOalXMaJYZJOPgoSgU2ER3vjDleMGjGwQKjidlZMe0QRaux1svYI7uzK81A7KbqlYunazZcdmCgDB3AIx+DCKZThCipQBQpdeIAneEYCPaIX9DopXUDTnj34I/T2A6TxkQ4=</latexit>

f
<latexit sha1_base64="1b5EDj64PlsE9fy0UUpd52hcSO0=">AAAB6nicbZC5TgMxEIbHnCFc4ehoLBIkqmiXItARiQLKIMghJavI63gTK17vyvYihVUegYYChGipqXgSOkreBOcoIOGXLH36/xl5ZvxYcG0c5wstLC4tr6xm1rLrG5tb27md3ZqOEkVZlUYiUg2faCa4ZFXDjWCNWDES+oLV/f7FKK/fMaV5JG/NIGZeSLqSB5wSY62bQlBo5/JO0RkLz4M7hfz5x/335ft+WmnnPludiCYhk4YKonXTdWLjpUQZTgUbZluJZjGhfdJlTYuShEx76XjUIT6yTgcHkbJPGjx2f3ekJNR6EPq2MiSmp2ezkflf1kxMcOalXMaJYZJOPgoSgU2ER3vjDleMGjGwQKjidlZMe0QRaux1svYI7uzK81A7KbqlYunazZcdmCgDB3AIx+DCKZThCipQBQpdeIAneEYCPaIX9DopXUDTnj34I/T2A6TxkQ4=</latexit>

fStep 1. Mapping elements by
learned model

Step 2. Re‐mapping elements
by learned mode

<latexit sha1_base64="1b5EDj64PlsE9fy0UUpd52hcSO0=">AAAB6nicbZC5TgMxEIbHnCFc4ehoLBIkqmiXItARiQLKIMghJavI63gTK17vyvYihVUegYYChGipqXgSOkreBOcoIOGXLH36/xl5ZvxYcG0c5wstLC4tr6xm1rLrG5tb27md3ZqOEkVZlUYiUg2faCa4ZFXDjWCNWDES+oLV/f7FKK/fMaV5JG/NIGZeSLqSB5wSY62bQlBo5/JO0RkLz4M7hfz5x/335ft+WmnnPludiCYhk4YKonXTdWLjpUQZTgUbZluJZjGhfdJlTYuShEx76XjUIT6yTgcHkbJPGjx2f3ekJNR6EPq2MiSmp2ezkflf1kxMcOalXMaJYZJOPgoSgU2ER3vjDleMGjGwQKjidlZMe0QRaux1svYI7uzK81A7KbqlYunazZcdmCgDB3AIx+DCKZThCipQBQpdeIAneEYCPaIX9DopXUDTnj34I/T2A6TxkQ4=</latexit>

f
<latexit sha1_base64="1b5EDj64PlsE9fy0UUpd52hcSO0=">AAAB6nicbZC5TgMxEIbHnCFc4ehoLBIkqmiXItARiQLKIMghJavI63gTK17vyvYihVUegYYChGipqXgSOkreBOcoIOGXLH36/xl5ZvxYcG0c5wstLC4tr6xm1rLrG5tb27md3ZqOEkVZlUYiUg2faCa4ZFXDjWCNWDES+oLV/f7FKK/fMaV5JG/NIGZeSLqSB5wSY62bQlBo5/JO0RkLz4M7hfz5x/335ft+WmnnPludiCYhk4YKonXTdWLjpUQZTgUbZluJZjGhfdJlTYuShEx76XjUIT6yTgcHkbJPGjx2f3ekJNR6EPq2MiSmp2ezkflf1kxMcOalXMaJYZJOPgoSgU2ER3vjDleMGjGwQKjidlZMe0QRaux1svYI7uzK81A7KbqlYunazZcdmCgDB3AIx+DCKZThCipQBQpdeIAneEYCPaIX9DopXUDTnj34I/T2A6TxkQ4=</latexit>

f

Step 3. QuickSortStep 4. Merge & Polishing

59

92

Fig. 4: Example

used as input to f for the next iteration. If the model f does not
perform effectively, i.e., the conflicting array may never shrink
below τ or may decrease too slowly, potentially resulting in
higher overhead than traditional sorting algorithms. To prevent
this, a threshold ϵ limits the maximum number of iterations.
As we will show in the experimental section, ϵ = 2 or ϵ = 3
are good enough for accelerating sorting. There is a clearly
decreased edge effect on the number of iterations.

Polish Phase. The polish phase refines the roughly sorted
arrays O = {o1, o2, ...} to ensure the correctness of the output.
Figure 3 outlines this process, where the arrays in O are
polished and merged with the strictly ordered array A′. The
algorithm iterates over each array in O, merging them with
A′ one by one. Elements in oi are either appended or inserted
into the result, depending on their order relative to A′ (i.e.,
Insert Sort).

Remark. Since oi is only roughly ordered, out-of-order ele-
ments are inserted into their correct positions in A′, ensuring
NN-sort’s reliability despite potential errors from the learned
model. Though insertion is costlier than appending, it is lim-
ited to out-of-order elements. As model accuracy improves, the
polish phase incurs acceptable overhead. Section III discusses
NN-sort’s complexity, with experimental results showing few
out-of-order elements, yielding nearly linear performance.

Example 1: Figure 4 illustrates how NN-sort sorting.
Given thresholds τ = 2, ϵ = 2 and an unordered array

A = {32, 60, 31, 1, 81, 6, 88, 38, 3, 59, 37, 92, 91}, NN-sort
first checks if A’s size is below τ ; if so, a traditional sorting
method is applied. Otherwise, learned sorting begins.

Here, NN-sort processes A in two rounds with a learned
model. A conflict arises between elements 37 and 38, as f
maps them to the same position, placing 37 in a conflict array
c. At the end of the first iteration, elements 92, 3, 91, 32, and
59 are also in the conflict array.

After the first iteration, since w’s size exceed τ and the itera-
tion count is below ϵ, all elements in c = {37, 92, 3, 91, 32, 59}
are reprocessed by f in a second iteration, yielding a new
sorted array o2 = {3, 37, 91, 92} and a smaller conflict array
c = {32, 59}. Then a traditional sorting algorithm (e.g., Quick
Sort) is applied to c, and finally, o1, o2, and sorted c are merged
in the polish phase, producing a fully ordered result.

2

3

TABLE I: Notations

symbols notations

n the amount of data elements to be sorted
σi collision rate per iteration

ei
the number of data elements that were

out-of-order in the i-th iteration
ϵ the predefined limit of iterations
t the number of completed iterations
θ The operations required for data to pass through f

Training. While training time is not the focus, all our mod-
els—whether shallow neural networks or simple linear/mul-
tivariate regression models—train quickly and perform well,
as perfect position mapping (i.e., no conflicts or out-of-order
elements) is unnecessary. The training and test data can differ;
any learned order relationships help the model understand the
sorting task.

III. MODEL ANALYSIS

This section establishes the time complexity of NN-sort by
analyzing key operations—moving, mapping, and comparing
data elements. A cost model is introduced to highlight relation-
ships among factors like conflict rate, model scale, iteration
count, out-of-order rate, data volume, and required operations.

The total operations of NN-sort is expressed as a
T (n, e, σ, t, θ), where: n is the number of data elements to
be sorted, e = {e1, ..., et} is the set of probabilities, with ei
denoting the proportion of out-of-order elements in the i-th
iteration, σ = {σ1, ..., σt} is the set of conflict rates, where σi

represents the conflict rate in the i-th iteration, t is the number
of iterations completed, θ denotes the number of operations
required for each data element to pass through the neural
network. These basic notations are summarized in Table I.

As shown in Eq 1, the number of operations for NN-sort to
sort n (n > 1) data elements is C1n

2 + C2nlogn+ C3n.

T (n, e, σ, t, θ) =

{
1, if n = 1
C1n

2 + C2nlogn+ C3n, if n > 1
(1)

C1 = [
1

2

t∑
i=1

ei(1− σi)(

i−1∏
j=1

σj)
2]

C2 =

t∏
j=1

σj

C3 =

t∑
i=1

[θ

i∑
j=1

σj + (1− ei)(1− αi)

i−1∏
j=1

σj +

i∏
j=1

σj]

+ (

t∏
j=1

σj)log(

t∏
j=1

σj)

In NN-sort, the majority of the cost is spent in the Sorting
and Polish phases. Let s(n) represent the time spent in the
Sorting phase and p(n) represent the time spent in the Polish

phase, we now formally analyze the complexity of NN-sort.
s(n) consists of two kinds of operations: iteratively feed-

ing the data elements into a learned model f and sorting
the array w at the last iterations using traditional sorting
algorithms (e.g., QuickSort), the time complexity of which
is nlogn. If n > 1, then θ

∑i
j=1 σjn operations are required

to feed data into model f in the i-th iteration. An additional
(
∏t

j=1 σj)nlog(
∏t

j=1 σj)n operations are required to keep w
order, since the size of conflicting array w updated in the last
iteration is (

∏t
j=1 σj)n. Therefore, at the end of the algorithm,

the total operations of s(n) is (
∏t

j=1 σj)nlog(
∏t

j=1 σj)n +

θ
∑t

i=1

∑i
j=1 σjn.

T (n) = s(n) + p(n) , (n > 1)

=(

t∏
j=1

σj)nlog(

t∏
j=1

σj)n+ θ

t∑
i=1

i∑
j=1

σjn+ p(n)

=(
t∏

j=1

σj)nlog(

t∏
j=1

σj)n+ θ

t∑
i=1

i∑
j=1

σjn

+

t∑
i=1

[ei(1− σi)

i−1∏
j=1

σjn×
∏i−1

j=1 σjn

2

+ (1− ei)(1− σi)

i−1∏
j=1

σjn+

i∏
j=1

σjn]

=[
1

2

t∑
i=1

ei(1− σi)(

i−1∏
j=1

σj)
2]n2 +

t∏
j=1

σjnlogn

+ {
t∑

i=1

[θ

i∑
n=1

σj + (1− ei)(1− αi)

i−1∏
j=1

σj

+

i∏
j=1

σj] + (

t∏
j=1

σj)log(

t∏
j=1

σj)}n

p(n) involves two tasks: correcting any out-of-order ele-
ments and merging the intermediate arrays (i.e., o1, ..., ot and
w). If no elements are out of order in oi, NN-sort only needs
to traverse the data once to merge them. However, in practice,
out-of-order elements are almost inevitable, as the model f is
unlikely to be 100% accurate.

For the ordered elements in oi, NN-sort only requires
appending it, with a time complexity of time complexity of
O(1). Therefore, in the i-th iteration, at most

∏i−1
j=1 σjn oper-

ations are required to complete the insertion, and at least one
operation is needed to insert out-of-order elements. While, for

an out-of-order element in the i-th merge iteration,
∏i−1

j=1 σjn

2
operations are required to insert it into the final ordered result.
Theoretically, assume that there are ei(1− σi)

∏i−1
j=1 σjn out-

of-order elements in the i-th iteration. It takes a total of
ei(1 − σi)

∏i−1
j=1 σjn ×

∏i−1
j=1 σjn

2 operations to process these
elements. Correspondingly, (1−ei)(1−σi)

∏i−1
j=1 σjn elements

in oi and
∏i

j=1 σjn elements in w remain ordered. Thus in
the i-th merge iteration, a total of

∏i
j=1 σjn + (1 − ei)(1 −

4

σi)
∏i−1

j=1 σjn operations are required to append the ordered
elements to the final result. Overall, NN-sort requires a total

of
∑t

i=1[ei(1 − σi)
∏i−1

j=1 σjn ×
∏i−1

j=1 σjn

2 + (1 − ei)(1 −
σi)

∏i−1
j=1 σjn+

∏i
j=1 σjn] to sort n data elements (We show

the detail in Equation 1).

IV. EXPERIMENTAL STUDY

Using real and synthetic data, we conducted five experi-
ments to evaluate (1) overall sorting performance, (2) iteration
impact, and (3) effects of changing data distribution.

A. Experimental setup

Datasets. The datasets used in this section are generated from
the most commonly observed distributions in the real world,
such as uniform distribution, normal distribution, and log-
normal distribution. The models used in the experiments are
trained over a subset of the testing data. The sizes of the testing
dataset vary from 200MB to 500MB and each data element
is 64 bits wide floating number. To verify the performance
of the NN-sort under the real-world dataset. We use the
QuickDraw game dataset from Google Creative Lab [12],
which consists of 50, 426, 265 records of schema {’key-id’,
’word’, ’country code’, ’timestamp’, ’recognized’, ’drawing’}.
Sorting is perform on ’key-id’.

Baselines. We compared with five baselines (1) Quick
Sort [13]: This algorithm divides the input dataset into two
independent partitions, such that all the data elements in the
first partition are smaller than those in the second partition.
Then, the dataset in each partition is sorted recursively. The
time complexity of Quick Sort can achieve O(nlogn) in the
best case while O(n2) in the worst case. (2) std::sort [14]:
std::sort is one of the most widely used sorting algorithms from
c++ standard library, and its time complexity is O(nlogn) (3)
std::heap sort [14]: std::heap sort is another sorting algo-
rithm from c++ standard library, and it guarantees to perform
at O(nlogn) time complexity. (4) Redis Sort [15]: Redis Sort
is a sorting method based on a data structure named sortSet.
To sort M data elements in a sortSet of size N , the efficiency
of Redis Sort is O(N + Mlog(M)). In addition, we also
compared NN-sort with (5) SageDB Sort [10], [11], leading
performance DNN-based sorting method.The relaxation factor
m is set to 1.25 for learned sorting methods to reduce conflicts.

Measurements. We used sorting time and sorting rate of
Equation 2 to evaluate the overall performance.

sorting rate =
elements

time to finish sorting
(2)

We also used traditional sorting rate to evaluate learned-based
sorting methods which is described in Equation 3. This rate
indicates how many data elements still require traditional sort-
ing due to model inaccuracy in the learning-based approach.
Ideally, a lower traditional sorting rate signifies the better
performance of learning-based sorting.

TABLE II: Evaluation under real-world data

Algorithm
name Time (sec.) Sorting Rate

(elements/sec.)

The traditional
sorting rate

(%)

Quick Sort 10.86 4666.14 -
std::heap sort 13.46 3746.44 -

std::sort 23.71 2127.19 -
Redis Sort 63.14 798.6320 -

SageDB Sort 10.53 4790.125 9.16
NN-sort 8.47 5950.186 0.4

Traditional sorting rate =
size(last conflicting array w)
size of the original array A

(3)

Environment. Experiments were conducted on a machine with
64GB RAM, a 2.6GHz Intel i7 processor, and a GTX1080Ti
GPU with 16GB memory, running RedHat Enterprise Server
6.3. Each result reported is the median of ten runs.

Training details. We employed a regression model with three
hidden layers, containing 2, 6, and 1 neurons, respectively. A
rounding function is used to determine each element’s final
position. Adam [16] was the chosen optimizer. The training
was conducted using a GPU and is performed offline, so
training time is excluded from the runtime.

lossδ =

{
1
2 (f(xi)− labeli)

2, if |f(xi)− labeli| ≤ δ,
δ|f(xi)− labeli| − 1

2δ
2, otherwise

(4)
To avoid the impact of outliers during training, the model

used in experiments is trained according to the Huber loss [17]
as shown in Equation 4. The batch size for training is set to
128. For all environments, we use the Adam optimizer with a
learning rate of 0.001.

B. Experimental results.

Exp-1: Overall Sorting Performance. Figure 5 presents
a performance comparison of NN-sort against traditional
sorting algorithms across various datasets with increasing
sizes. Figures 5(a)–(c) show the total sorting time, while
Figures 5(d)–(f) illustrate the sorting rates. Figures 5(g)–(i)
highlight the traditional sorting rate comparison between NN-
sort and SageDB sort, as defined in Equation 3. we observe
the following:
NN-sort exhibits notable advantages over traditional sorting

algorithms. As shown in Figure 5 (d), its sort rate for a
lognormal distribution dataset reaches nearly 8,300 elements
per second, outperforming std::heap sort by 2.8×, Redis Sort
by 10.9×, std::sort by 4.78×, and Quick Sort by 218%.
It also exceeds SageDB Sort by 15%. The dataset’s value
range—defined by its maximum and minimum values—affects
NN-sort ’s performance. As shown in Figure 5 (h), a slight
decline in sorting rate occurs with highly concentrated values,
which create more conflicts and reduce efficiency. In contrast,
fewer records within the same range enhance sorting perfor-

5

200 250 300 350 400 450 500
Data size (MB)

10000

20000

30000

40000

50000

Ti
m

e
(s

ec
.)

(a) Time to finish sorting: log-normal

200 250 300 350 400 450 500
Data size (MB)

10000

20000

30000

40000

50000

Ti
m

e
(s

ec
.)

(b) Time to finish sorting: normal

200 250 300 350 400 450 500
Data size (MB)

10000

20000

30000

40000

50000

Ti
m

e
(s

ec
.)

(c) Time to finish sorting: uniform

200 250 300 350 400 450 500
Data size (MB)

1000
2000
3000
4000
5000
6000
7000

R
ec

or
ds

 p
er

 m
s.

(d) Sorting rate: log-normal

200 250 300 350 400 450 500
Data size (MB)

1000
2000
3000
4000
5000
6000
7000

R
ec

or
ds

 p
er

 m
s.

(e) Sorting rate: normal

200 250 300 350 400 450 500
Data size (MB)

2000

4000

6000

8000

R
ec

or
ds

 p
er

 m
s.

(f) Sorting rate: uniform

200 250 300 350 400 450 500
Data size (MB)

0.0

0.1

0.2

0.3

0.4

R
at

e

(g) Conflicting rate: log-normal

200 250 300 350 400 450 500
Data size (MB)

0.0

0.1

0.2

0.3

0.4

R
at

e

(h) Conflicting rate: normal

200 250 300 350 400 450 500
Data size (MB)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
at

e

(i) Conflicting rate: uniform

NN-sort quick sort std::heap sort SageDB sort std::sort Redis sort

Fig. 5: Overall performance evaluation

mance.
NN-sort achieves optimal performance with uniformly dis-

tributed data, reaching a sorting rate of approximately 8,000
records per second—about 1.3× higher than with a normal
distribution—due to fewer conflicts in uniformly distributed
records.

Compared to SageDB Sort, NN-sort consistently reduces
reliance on traditional sorting. A larger proportion of elements
are accurately sorted by NN-sort’s neural model, minimizing
the need for the more time-consuming traditional sorting and
contributing to NN-sort ’s superior performance over SageDB
Sort.

Exp-2: Evaluation on real-word Dataset. Using the model
trained in previous sections on uniformly distributed data, we
evaluated NN-sort ’s performance on the real-world dataset
QuickDraw. As shown in Table II, NN-sort delivers significant
performance gains over traditional sorting algorithms on real-
world data. With a sorting rate of 5,950 elements per second,
NN-sort outperforms std::sort by 2.72× and Redis Sort by

0 20 40 60 80 100
Percentage of noice data (%)

2000

2500

3000

3500

4000

4500

5000

Ti
m

e
(m

s.)

NN-sort Elapse time of std::sort

Fig. 6: The impact of data distribution on NN-sort
performance

7.34×, and is also 58% faster than std::heap sort. Additionally,
NN-sort surpasses SageDB Sort in both traditional sorting rate
and overall sorting rate.

Exp-3: Impact of the Changing Data Distribution. As

6

1 2 3 4 5
The number of Iterations

11000

12000

Ti
m

e
(m

s.)
(a) log-normal

1 2 3 4 5
The number of Iterations

12000
13000
14000

Ti
m

e
(m

s.)

(b) normal

1 2 3 4 5
The number of Iterations

8000

9000
10000
11000

Ti
m

e
(m

s.)

(c) uniform

0

1

2

ar
ra

y
si

ze

1e7

0

1

2

3

ar
ra

y
si

ze

1e7

0

1

2

ar
ra

y
si

ze

1e7

Sort time The size of last overflow array

Fig. 7: Impact of Iterations

shown in previous experiments, NN-sort performs optimally
when the distribution of the sorting data resembles that of
the training data. But how does it perform when faced with a
different data distribution? To explore this, we trained a model
using a 100MB uniformly distributed dataset, then applied
it to sort datasets with varying distributions. Specifically,
the test dataset combined uniformly and normally distributed
data, with the latter considered ”noisy.” Sorting time was
measured to assess NN-sort ’s effectiveness, as shown in
Figure 6. Results indicate that as noise in the dataset increases,
NN-sort’s effectiveness declines due to a growing number
of conflicts elements generated in each iteration when the
test data distribution diverges from the training data. These
elements must then be handled by traditional algorithms during
the polish phase. Nonetheless, NN-sort shows resilience to
distributional changes, outperforming the widely-used std::sort
algorithm even with up to 45

Exp-4: Impact of Iterations. NN-sort ’s sorting performance
is influenced by both the size of the final conflicting array and
the number of iterations. Increasing the number of iterations
reduces the size of the remaining conflicting array that requires
traditional sorting, yet also extends model processing time.
Conversely, fewer iterations leave a larger conflicting array,
increasing the time required for traditional sorting. In this set
of experiments, we quantify these factors to guide users in
optimizing NN-sort for improved performance.

In Figure 7, the rhombus-dotted line represents the size of
the final conflicting array, while the round-dotted line indicates
total sorting time. Results show that while additional iterations
reduce the size of the final conflicting array, they don’t
necessarily improve performance, as each iteration requires
the model to process all input data elements. Our experiments
suggest that 2-3 iterations provide an optimal balance between
conflicting array size and sorting time.

Exp-5: Evaluation of sorting accuracy. A more complex
neural network generally enhances model expressibility, result-
ing in lower conflict rates, and fewer out-of-order elements,
but higher inference times. Thus, understanding the impact
of these factors on NN-sort’s overall time complexity is
essential. In this section, we use a cost curve to illustrate how
model quality—represented by the conflict rate σi and out-

0.0
x1

07

0.2
x1

07

0.5
x1

07

0.8
x1

07

1.0
x1

07

1.2
x1

07

1.5
x1

07

1.8
x1

07

2.0
x1

07

The number of data elements to be sorted (n)
0.0

x1
08

1.0
x1

08
2.0

x1
08

3.0
x1

08
4.0

x1
08

5.0
x1

08

Th
e

nu
m

be
r o

f o
pe

ra
tio

ns
 to

 so
rt

n
el

em
en

ts

Quick Sort
NN-sort in which 10% of the elements collide or are misordered
NN-sort in which 5% of the elements collide or are misordered

Fig. 8: Comparison of operations between traditional sorting
algorithm and NN-sort with different model qualities.

of-order rate ei in each sorting iteration—affects NN-sort ’s
performance.

Figure 8 compares the number of operations required by
NN-sort to sort n elements against Quick Sort’s baseline
complexity (O(n log n)). To illustrate performance variations,
we adjust NN-sort ’s model quality. This analysis assumes
NN-sort performs up to five iterations (t = 5), with a model
scale θ of 32 neurons, and equal conflict and out-of-order
rates (σi = ei) that remain constant across iterations. Results
show that NN-sort substantially outperforms Quick Sort when
conflict and out-of-order rates are at 10%, with even greater
performance gains as these rates drop to 5

In summary, fewer conflicts and misordered elements result
in more efficient sorting with NN-sort. A well-trained model
with a misorder rate of 10% or lower can outperform tradi-
tional sorting algorithms in terms of computational efficiency.

V. RELATED WORK

Sorting is one of the most fundamental algorithms in
computing. We identify two key research areas: methods to
reduce sorting time complexity and neural network-based data
structures.

Methods for reducing the sorting time complexity. Many
researchers have focused on accelerating sorting by reduc-
ing its time complexity. Traditional comparison-based sorting
algorithms like Quick Sort, Merge Sort, and Heap Sort re-
quire at least logn! ≈ nlogn − 1.44n operations to sort n

7

elements [18]. Among these, Quick Sort achieves O(nlogn)
average complexity but degrades to O(n2) in the worst case.
Merge Sort, while guaranteeing a worst-case of nlogn−0.91n,
requires additional linear space relative to the number of
elements [18]. To mitigate the drawbacks of these algorithms
and further reduce sorting time, researchers have combined
different sorting techniques to leverage their strengths. Tim
Sort [19], the default sorting algorithm in Java and Python,
combines Merge Sort and Insertion Sort [13] to achieve fewer
than nlogn comparisons on partially sorted arrays. Stefan
Edelkamp et al. proposed Quickx Sort [20], which uses at
most nlogn − 0.8358n + O(logn) operations for in-place
sorting. They also introduced a median-of-medians variant of
Quick Merge Sort [18], which employs the median-of-medians
algorithm for pivot selection, reducing the operation count to
nlogn+ 1.59n+O(n0.8).

Redis Sort [15] is a build-in sorting method of the Re-
dis database based on the sortSet data structure. It sorts
M elements in a sortSet of size N with an efficiency of
O(N +Mlog(M)).

Unlike previous work, this approach uses a learned model
complexity to map an unordered array to a roughly ordered
state, reducing overall operations. In the worst case, NN-sort
has complexity O(n2) if all elements map to the same posi-
tion, though practical operations remain lower than traditional
sorting, This is validated by our experiment in Figure 8.

Learned data structures and algorithms. This thread of
research is to explore the potential of using the neural network-
based learned data structures to improve the performance
of systems. Tim Kraska [9], [10] discussed the benefits of
learned data structures and suggested that R-tree can be
optimized by learned data structures. Xiang et al. [8] proposed
an LSTM-based inverted index structure. By learning the
empirical distribution function, their learned inverted index
structure led to fewer average look-ups when compared with
traditional inverted index structures. Alex Galakatos et al.
[21] presented a data-aware index structure called FITing-
Tree, which can approximate an index using piece-wise linear
functions with a bounded error specified at construction time.
Michael Mitzenmacher [22] proposed a learned sandwiching
bloom filter structure, while the learned model is sensitive to
data distributions.

Unlike the research mentioned above, our approach inte-
grates sorting with learning by training a model to enhance
sorting performance. Additionally, we employ an iteration-
based mechanism to further optimize performance by mini-
mizing conflicts. We also provide a formal analysis of the
time complexity of our approach and present a cost model to
balance model accuracy with sorting performance. A closely
related work is SageDB Sort [11], [21], which leverages deep
neural networks for sorting. Our approach improves upon
SageDB Sort by offering a more efficient solution for handling
position conflicts generated by the learned model.

VI. CONCLUSION

Sorting is fundamental in big data processing. We introduce
NN-sort, a neural network-based sorting method that uses
historical data to sort new data, iteratively reducing sorting
conflicts—a key bottleneck in learned sorting. Our analysis
includes complexity, a cost model, and the balance between
model accuracy and performance. Experiments show NN-sort
outperforms traditional algorithms. Future work includes en-
hancing NN-sort’s adaptability to changing data distributions.

REFERENCES

[1] G. Graefe, “Implementing sorting in database systems,” ACM Comput.
Surv., vol. 38, no. 3, p. 10, 2006.

[2] R. Hilker, C. Sickinger, C. N. Pedersen, and J. Stoye, “UniMoG—a
unifying framework for genomic distance calculation and sorting based
on DCJ,” Bioinformatics, vol. 28, no. 19, pp. 2509–2511, 2012.

[3] D. Cederman and P. Tsigas, “A practical quicksort algorithm for graphics
processors,” in Algorithms - ESA 2008, D. Halperin and K. Mehlhorn,
Eds., 2008, pp. 246–258.

[4] A. Andersson, T. Hagerup, S. Nilsson, and R. Raman, “Sorting in linear
time?” Journal of Computer and System Sciences, vol. 57, no. 1, pp.
74–93, 1998.

[5] S. Bandyopadhyay and S. Sahni, “GRS - GPU radix sort for multifield
records,” in HiPC, 2010, pp. 1–10.

[6] J. Tang and X. Zhou, “Cardinality sorting and its bit-based operation-
based optimization (in chinese),” JOURNAL OF NANJINGUNIVERSITY
OF TECHNOLOGY, vol. 20, 2006.

[7] X. Zhu, Q. Zhang, T. Cheng, L. Liu, W. Zhou, and J. He, “Dlb: deep
learning based load balancing,” in CLOUD, 2021.

[8] W. Xiang, H. Zhang, R. Cui, X. Chu, K. Li, and W. Zhou, “Pavo: A
rnn-based learned inverted index, supervised or unsupervised?” IEEE
Access, vol. 7, pp. 293–303, 2019.

[9] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “The case
for learned index structures,” in SIGMOD, 2018, pp. 489–504.

[10] T. Kraska, M. Alizadeh, A. Beutel, E. H. Chi, A. Kristo, G. Leclerc,
S. Madden, H. Mao, and V. Nathan, “Sagedb: A learned database
system,” in CIDR, 2019.

[11] J. Ding, R. Marcus, A. Kipf, V. Nathan, A. Nrusimha, K. Vaidya, A. van
Renen, and T. Kraska, “Sagedb: An instance-optimized data analytics
system,” PVLDB, vol. 15, no. 13, 2022.

[12] Google, “Google creative lab,” Available: https://github.com/
googlecreativelab, google Creative Lab [Online].

[13] T. H. Cormen, Introduction to Algorithms, 3rd Edition. Press.
[14] “C++ resources network,” http://www.cplusplus.com/, general informa-

tion about the C++ programming language, including non-technical
documents and descriptions.

[15] “Redis,” https://redis.io/, redis is an open source (BSD licensed), in-
memory data structure store, used as a database, cache and message
broker.

[16] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in ICLR , 2015.

[17] P. J. Huber, “Robust estimation of a location parameter,” Annals of
Mathematical Statistics, vol. 35, no. 1, pp. 73–101, 1964.

[18] S. Edelkamp and A. Weiß, “Worst-case efficient sorting with quick-
mergesort,” in ALENEX, 2019, pp. 1–14.

[19] “Python resources network,” https://www.python.org/, general informa-
tion about the Python programming language, including non-technical
documents and descriptions.

[20] S. Edelkamp and A. Weiß, “Quickxsort: Efficient sorting with n logn
- 1.399n + o(n) comparisons on average,” in International Computer
Science Symposium in Russia, 2014, pp. 139–152.

[21] A. Galakatos, M. Markovitch, C. Binnig, R. Fonseca, and T. Kraska,
“Fiting-tree: A data-aware index structure,” in SIGMOD, 2019.

[22] M. Mitzenmacher, “A model for learned bloom filters, and optimizing
by sandwiching,” CoRR, vol. abs/1901.00902, 2019. [Online]. Available:
http://arxiv.org/abs/1901.00902

8

