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ABSTRACT
This paper presentsMiniGraph, an out-of-core system for querying
big graphs with a single machine. As opposed to previous single-
machine graph systems, MiniGraph proposes a pipelined architec-
ture to overlap I/O and CPU operations, and improves multi-core
parallelism. It also introduces a hybrid model to support both vertex-
centric and graph-centric parallel computations, to simplify parallel
graph programming, speed up beyond-neighborhood computations,
and parallelize computations within each subgraph. The model
induces a two-level parallel execution model to explore both inter-
subgraph and intra-subgraph parallelism. Moreover, MiniGraph
develops new optimization techniques under its architecture. Using
real-life graphs of different types, we show thatMiniGraph is up
to 76.1× faster than prior out-of-core systems, and performs better
than some multi-machine systems that use up to 12 machines.

1 INTRODUCTION
Big graph analytics has mostly been a privilege of big companies
by employing a cluster of machines. For instance, to compute con-
nected components of a graph with billions of vertices and trillions
of edges, Google employs a 1000-node cluster with 12000 processors
and 128 TB of aggregated memory [66]. To mine 3-FSM with sup-
port = 25000 on a million-edge graph, DistGraph [68] uses 128 IBM
BlueGene/Q supercomputers and 32,768 GB memory. A number
of graph systems have been developed to explore multi-machine
parallelism, e.g., [3, 27, 33, 35, 52, 56, 69, 72, 76, 79, 82]. However,
big graph analytics via multiple machines is often beyond reach of
small companies, which cannot afford such enterprise clusters.

Moreover, many parallel graph systems “have either a surpris-
ingly large COST, or simply underperform one thread” [53]. For
example, single-source shortest path (SSSP) is “essentially not scal-
able with an increasing number of machines” [74]. This is because
multi-machine systems typically adopt the shared-nothing archi-
tecture, and the more machines are used, the heavier their commu-
nication cost is incurred. In addition, machines in such a system
are often under-utilized due to unbalanced workload.

To rectify the limitations of the multi-machine systems, single-
machine systems have been studied to explore multi-core par-
allelism, notably out-of-core systems to process data that is too
large to fit into the main memory of a single machine at once
[11, 32, 45, 51, 62, 75, 83]. The systems are developed on a machine
that has a number of CPU cores, but limited memory capacity and
disk I/O bandwidth. To get over the bottleneck, these systems have
mostly focused on how to optimize I/O and memory efficiency.

Despite the efforts, disk I/O remains the bottleneck of the single-
machine systems. ConsiderWeakly Connected Components (WCC).
Given a graph𝐺 ,WCC is to compute the maximum subgraphs of
𝐺 in which all vertices are connected to each other via a path, re-
gardless of the direction of edges. Consider GridGraph [83], a state-
of-the-art out-of-core system featuring optimal I/O. We run the

System friendster (mean distance: 5.1) web-sk (mean distance: 13.7)

# Supersteps Disk Read # Supersteps Disk Read

GridGraph 21 135 GB 120 367 GB
MiniGraph 6 74 GB 9 82 GB

Table 1: WCC performance on GridGraph and MiniGraph.

out-of-boxWCC implementation of HashMin [77] that comes with
GridGraph as a benchmarking application. The test was conducted
on a workstation powered with a 10-core CPU with hyperthreading
and 16 GB DDR4 memory. Graph𝐺 is friendster or web-sk [61];
both have∼1.8 billion edges, and amount to∼31 GB, about twice the
memory size. We measure its system I/O using iostat. As shown
in Table 1, while the two graphs are similar in size, GridGraph
incurs drastically different I/O costs. It induces 2.7× disk read on
web-sk as on friendster, which is relatively denser.

An in-depth analysis reveals that the excessive I/O often stems
from the vertex-centric model [33, 52, 83] adopted by GridGraph
for parallel computation, referred to as VC. Under VC, an algorithm
employs a user-defined function to process the immediate neighbor-
hood of each vertex (or edge), and exchanges information between
vertices via message passing. To send a message from a memory-
resident vertex to a memory-absent one, it inevitably requires swap-
ping their data in and out of the memory; as a consequence, VC
generally incurs more disk I/O when 𝐺 has a larger diameter.

Moreover, while VC is natural for graph algorithms such as
PageRank [17] and HashMin [77] (forWCC), it is neither easy to
write nor efficient to execute e.g., an optimizedWCC algorithm via
Breath-First Search [37] and graph pattern matching algorithms
with subgraph isomorphism or graph simulation [23] under VC.

Canwe systematically reduce the I/O cost of an out-of-core graph
system and improve multi-core parallelism? Given a computational
problem, would other parallel models fit it better than VC?

MiniGraph. To answer these questions, we developMiniGraph, an
out-of-core system for graph computations with a single machine.
It is the first single-machine system that extends the graph-centric
model (GC) of [24, 27] from multiple machines to multiple cores.
It shows that GC speeds up beyond-neighborhood computation
and reduces I/O, and moreover, simplifies parallel programming by
parallelizing existing sequential algorithms across cores.

As shown in Table 1, when computingWCC over friendster
(resp. web-sk), the benefit of the beyond-neighborhood computa-
tion (GC) is evident:MiniGraph (a) takes 6 (resp. 9) supersteps to
converge under the bulk asynchronous model (BSP) [70], as op-
posed to 21 (resp. 120) steps with GridGraph; (b) reads 74 GB (resp.
82 GB) of data in contrast to 135 GB (resp. 367 GB) of GridGraph;
and (c) is less sensitive to the distribution of the input graphs.

However, it is nontrivial to migrate GC to a single-machine
system. It introduces new challenges such as memory constraint
and I/O cost. MiniGraph approaches the following challenges that
are non-existent in prior GC systems: (a) out-of-core computations



and in-memory synchronizations; (b) multi-core parallelism; and
(c) resource scheduling. It has the following unique features.

(1) A pipelined architecture. MiniGraph proposes an architecture
that pipelines access to disk for read and write, and CPU operations
for query answering. The idea is to overlap I/O and CPU operations,
so as to “cancel” the excessive I/O cost, and promote sequential
accesses to the disk. Moreover, it employs a shared in-memory data
structure for message passing and efficient synchronization. This
architecture decouples computation from memory management
and scheduling, giving rises to new opportunities for optimizations.

(2) A hybrid parallel model. MiniGraph proposes a hybrid model,
supporting both the data-partitioned parallelism of GC and the
operation-level parallelism of VC. Under the memory constraint, it
promotes better utilization of the multi-core resources and avoids
fragmentation of the input graph. Moreover, it exposes a unified
interface such that the users can benefit from both and can choose
one that fits their applications and graphs the best.

(3) Two-level parallelism. The hybrid model also enables two-level
parallelism: inter-subgraph parallelism via high-level GC abstrac-
tion, and intra-subgraph parallelism for low-level VC operations.
This presents new opportunities for improving multi-core paral-
lelism. However, its relevant scheduling problem is NP-complete.
This said, we develop an efficient heuristic to allocate resources,
which is dynamically adapted based on resource availability.

(4) System optimizations.MiniGraph develops unique optimization
strategies enabled by the hybrid parallel model. It employs a light-
weight state machine to model the progress of cores working on
different subgraphs, and tracks messages between cores. These
allow it to explore shortcuts in the process to avoid redundant I/O.

Contributions & organization. After reviewing VC and GC par-
allel models (Section 2), we presentMiniGraph as follows:
◦ its pipelined architecture and a system overview (Section 3);
◦ the hybrid parallel model (Section 4);
◦ the two-level parallel execution model, including resource sched-

uling (Section 5.1) and system optimizations (Section 5.2); and
◦ an experimental study (Section 6). Using real-life graphs, we

find the following. (a) With various out-of-core workloads,
MiniGraph outperforms prior out-of-core systems by 10.8× on
average, up to 76.1×. (b) It is able to query a graph of size 10×
of the memory capacity. (c) It outperforms the state-of-the-art
multi-machine systems when they use up to 12 machines.

2 BACKGROUND AND MOTIVATION
In this section, we review parallel graph (programming) models.

Consider graph𝐺 = (𝑉 , 𝐸, 𝐿), directed or undirected, where𝑉 is
a finite set of vertices; 𝐸 ⊆ 𝑉 ×𝑉 is a set of edges; each vertex 𝑣 in
𝑉 (resp. edge 𝑒 ∈ 𝐸) carries label 𝐿(𝑣) (resp. 𝐿(𝑒)) for properties.

In principle, a graph parallel model determines how users can
program with the system and how the programs are executed in
parallel. Two types of parallel models have been implemented in
(multi-machine) graph systems, namely, VC and GC.
The vertex-centric model (VC). Initially proposed by Pregel [52],
VC has been the de facto go-to model for parallel graph systems.
Its principle is for users to think like a vertex: a vertex program

is “pivoted” at a vertex; it may only directly access information
at the current vertex and its adjacent edges [33, 52]; information
is exchanged between “remote” vertices via message passing. Sev-
eral variants of VC are in place. For example, the GAS model of
PowerGraph [33] requires three user-specified functions: (1)Gather
defines how a vertex 𝑣 aggregates incomingmessages from its neigh-
bors; (2) Apply specifies how 𝑣 updates its own attributes based on
the message received; and (3) Scatter defines what messages at 𝑣
are generated as outgoing messages to its neighbors.

It is natural to program with VC for a problem when its compu-
tation can be distributed to vertices and is centered at each vertex,
such as PageRank. It is, however, nontrivial to write VC algorithms
for problems that are constrained by “joint” conditions on multiple
vertices, e.g., graph simulation [54] and subgraph isomorphism [31].
While a variety of conventional sequential algorithms have been
developed for such problems, to program with VC, one has to recast
the existing algorithms into the VC model. Moreover, such VC pro-
grams are often inefficient since they incur heavy message passing.
The issue is more staggering for out-of-core systems since we have
to repeatedly load the adjacent list of a vertex from disk to memory
when the recursive/induction process backtracks.

Example 1: As a common benchmarking algorithm for WCC,
HashMin works as follows under VC: (1) initially, each vertex is
assigned a distinct numeric label; (2) in every iteration, each vertex
collects the labels from its neighbors (via bi-directional message
passing along edges), and updates its own label with the minimum
within the neighborhood; (3) when no more label updates can be
made, it returns the total number of distinct labels in the graph.

On graph𝐺 of Figure 1a, HashMin takes 5 supersteps under BSP
as shown in Figure 1b, where active vertices are in light color and in-
active ones are in gray.We also count the number of message passed
in each superstep, marked as “#Ops”. As the computation progresses,
more vertices become inactive, and less messages are passed.

Observe the following: (1) The labels of vertices in Subgraph 𝐷

are overwritten repeatedly; many initial messages and label updates
are redundant. In total 92 messages are passed, while𝐺 has 16 edges
only. (2) It takes 5 supersteps. Every edge must be swapped in and
out of the memory for 5 times if𝐺 cannot fit in the memory entirely.
It is translated to a disk read demand that is 5× of the size of𝐺 . 2
The graph-centric model (GC). Proposed by GRAPE [27], GC
carries out data-partitioned parallelism. Given a big graph 𝐺 , it
partitions 𝐺 into fragments (subgraphs) using existing graph parti-
tioners (edge-cut [12, 42], vertex-cut [16, 33, 43] or hybrid [25]), and
distributes the fragments to different workers. It parallelizes sequen-
tial graph algorithms. More specifically, for a graph computational
problemQ, users may provide three (existing) sequential algorithms
PEval, IncEval and Assemble, referred to as a PIE program:
◦ PEval is a conventional algorithm for Q such that all workers ex-

ecute it on their local fragments in parallel, and produce partial
results (partial evaluation); the values of border nodes (e.g., ver-
tices with edges to other fragments) are exchanged as messages;

◦ IncEval is a sequential incremental algorithm for Q; it is repeat-
edly executed to refine the partial results by treating messages
from other workers as updates (incremental computation); and

◦ when no more messages are exchanged, Assemble aggregates
partial results from all the workers and forms the final answer.

2



Superstep 1 Superstep 2 Superstep 3

Superstep 4 Superstep 5

#Ops: 32 #Ops: 28 #Ops: 20

#Ops: 8 #Ops: 4

Superstep 1: PEval #Ops: 16

(b) VC execution in 5 supersteps.

(c) GC execution in 3 supersteps.
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(a) Input graph G.

Superstep 2: IncEval #Ops: 12

Superstep 3: IncEval #Ops: 4
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Figure 1: WCC computation on𝐺 with VC or GC.

The parallelized computation starts with PEval, and is followed
by iterative IncEval until a fixpoint is reached. Under a generic con-
dition, it guarantees to converge at correct answers as long as the
sequential algorithms PEval, IncEval and Assemble are correct [28].
All three functions operate on subgraphs of graph 𝐺 .

As opposed to VC, GC supports beyond-neighborhood compu-
tations. It simplifies parallel programming by parallelizing existing
sequential algorithms; moreover, it reduces unnecessary recomputa-
tion via iterative IncEval. However, for problems such as PageRank,
when graph partitions are not “well balanced” [25], the commu-
nication cost of a GC algorithm between workers may be higher
than its VC counterpart. Moreover, the parallelism is explored at
the subgraph level, not at the vertex/edge-level in each subgraphs.

Example 2: As opposed to HashMin, GC parallelizes a more effi-
cient sequentialWCC algorithm. After labeling all vertices of graph
𝐺 with distinct integers, the algorithm proceeds on each fragment
(subgraph) 𝐹𝑖 of𝐺 with single-threaded worker𝑊𝑖 . (1) Starting with
PEval,𝑊𝑖 initiates BFS from the vertex 𝑣 that has the minimum
label 𝐿(𝑣) among all the vertices in 𝐹𝑖 . During the BFS, it overwrites
their labels with 𝐿(𝑣). (2) As soon as no vertex remains active,𝑊𝑖

generates messages comprising the updated labels of border nodes
of 𝐹𝑖 . (3) With all updates received from other workers, if 𝑣 ’s update
carries a smaller label,𝑊𝑖 overwrites 𝐿(𝑣); it invokes IncEval to in-
crementally refine the partial results until no message is exchanged
among workers. (4) Finally, the algorithm calls Assemble to count
WCC as the total number of distinct labels from all workers.

Suppose that graph𝐺 is partitioned into 4 subgraphs, as depicted
in Figure 1a. GC completes WCC in 3 supersteps under BSP (1
round of PEval and 2 rounds of IncEval), as illustrated in Figure 1c.

Observe the following: (1) GC reduces redundant computation
and needs 3 supersteps only. (2) It passes 32 messages on 𝐺 (-65%
from VC), and requires loading each subgraph only three times
(-40% from VC). This said, the computation within each subgraph
is conducted sequentially, and there is room for improvement. 2

To the best of our knowledge, no single-machine systems sup-
ports the GC model despite its efficiency and ease of programming.

3 MINIGRAPH: AN OVERVIEW
In this section, we present an overview ofMiniGraph.
Challenges. GC is designed for multi-machine systems [24, 27].
Extending it to a single-machine system introduces new challenges.
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Figure 2: The pipelined architecture of MiniGraph.

◦ Out-of-core computation. A single-machine system has to resort
to secondary storage as memory extension when an input graph
exceeds its memory capacity. Managing the in-memory and the
on-disk parts of an input graph is crucial to performance.

◦ Synchronization. GC passes messages among workers for syn-
chronization. With a shared memory, can a single-machine sys-
tem synchronize more efficiently via shared data structures?

◦ Parallelism. GC exploits data-partitioned parallelism only. With
limited memory capacity, it would result in either under-
utilization of the CPU cores or excessive graph fragmentation.
Systemically balancing the two factors is challenging.

◦ Scheduling. Work migration incurs low cost among cores in a
single machine, due to its shared-memory architecture. Can we
leverage flexible resource scheduling to improve performance?
In light of these,MiniGraph proposes a pipelined architecture,

a hybrid parallel model of VC and GC, two-level parallelism, and
unique optimizations on resource scheduling and I/O.

Graph partitioning. Previous single-machine systems organize an
input graph as a large number of chunks (a.k.a. shards [45], blocks
[83]), each consisting of a (possibly small) list of edges. This design
serves the sole purpose of gathered I/O, while the system schedules
and operates directly on edges. It provides fine-grained scheduling,
yet may not work well with the block storage.

MiniGraph explores a conceptually different approach. It parti-
tions a large graph 𝐺 such that one or more fragments can fit into
the memory. A fragment is essentially a subgraph of𝐺 .MiniGraph
adopts a two-level abstraction: (1) at a high level, it sees a subgraph
as the atomic unit for scheduling and I/O; and (2) when processing
a subgraph that is in memory, it may carry out parallel computa-
tion on the edges and vertices. Our empirical study shows that the
two-level abstraction improves multi-core parallelism.

MiniGraph may use any graph partitioners designed for multi-
machine parallel systems e.g., [12, 16, 25, 33, 42, 43, 59]. It works
with any existing graph partitioners, by taking as input a partitioned
graph and making scheduling/execution decisions accordingly. De-
ciding an optimal graph partitioner or the number of partitions is,
however, highly non-trivial and beyond the scope of this paper.

A pipelined architecture. MiniGraph takes as input the sub-
graphs (fragments) 𝐹0, 𝐹1, . . . , 𝐹𝑛−1 of a (possibly large)𝐺 ; the sub-
graphs are initially stored on disk.MiniGraph iteratively processes
the subgraphs in a pipelined architecture, as shown in Figure 2.

This architecture overlaps I/O and CPU operations, and conducts
computations on in-memory subgraphs while loading pending ones

3



Algorithm 1: A conceptual implementation of EMap
Scope Variables: local subgraph 𝐹𝑖 , intermediate data Π𝑖 .
Input: active vertex set Δ ∈ 2𝑉 , update function 𝑓𝐸 : (𝑉 ,𝑉 ) → 2𝑉 .
Output: updated active vertex set Δ′ ∈ 2𝑉 .
1 Δ′ := ∅;
2 foreach 𝑢 in Δ do in parallel
3 foreach 𝑣 in 𝑢.neighbors do in parallel
4 Δ′ := Δ′ ∪ 𝑓𝐸 (𝑢, 𝑣) /* 𝐹𝑖 and Π𝑖 may be accessed. */

5 return Δ′;

from the disk. It mitigates the excessive cost of I/O, improving CPU
utilization by reducing idle waiting. While prior out-of-core sys-
tems implement a similar notion (e.g., [45, 51]), their VC inevitably
generates scattered I/O; in contrast,MiniGraph promotes subgraph-
based I/O of GC, and consistently accesses the disk sequentially.

More specifically,MiniGraph breaks down the out-of-core pro-
cessing of a subgraph 𝐹𝑖 into three consecutive stages: (1) read 𝐹𝑖
into the memory, (2) compute and update 𝐹𝑖 , and (3) if necessary,
write the updated 𝐹𝑖 back to the secondary storage. It has three com-
ponents: Loader, Evaluator, andDischarger, for the three stages, re-
spectively. They work asynchronously in a pipeline, and are loosely
coupled via two task queues InboundQueue and OutboundQueue.

Loader. Working in a dedicated thread, Loader continuously selects
and reads a memory-absent subgraphs from disk into the memory,
as long as system memory capacity is not exhausted. It operates
regardless of the progress of other system components. This design
makes full utilization of disk read bandwidth. Instead of many
scattered reads, Loader issues a small number of bulk read requests,
which can improve read throughput and reduce system interrupts.

Once a subgraph 𝐹𝑖 is loaded into the memory, Loader pushes
its token 𝑇𝑖 into InboundQueue, where 𝑇𝑖 includes metadata of 𝐹𝑖
such as pointers to the data and its current state.

Evaluator. As the downstream component of Loader, Evaluator is
responsible for efficient execution of an application. It pops token𝑇𝑖
from InboundQueue, locates 𝐹𝑖 in memory, and initializes a virtual
worker𝑊𝑖 with reserved thread allocations to execute the program
on 𝐹𝑖 . During the execution,𝑊𝑖 can update 𝐹𝑖 in place, and may
generate updates to other subgraphs. The update messages are
cached inMessageStore, an array-like storage in memory.

To fully exploit the multi-core parallelism and cache locality,
Evaluator manages a global thread pool, whose size is decided by
the system hardware concurrency.Whenever threads become idle, it
triggers Scheduler, which re-allocates the resources to workers (see
below). Once a worker completes, Evaluator reclaims the reserved
threads and pushes token 𝑇𝑖 to OutboundQueue for discharging.

Discharger. As a counterpart of Loader, Discharger writes the sub-
graph data back to the disk. It consumes OutboundQueue contin-
uously in a dedicated thread. For a popped token 𝑇𝑖 , it (1) writes
the updated 𝐹𝑖 contiguously to disk, and (2) records 𝐹𝑖 ’s latest
state to StateManager for maintenance. After 𝐹𝑖 is fully discharged,
Discharger evicts it from memory and reclaims space for Loader.

Key modules. MiniGraph implements the following unique mod-
ules for programming, execution and optimization.

MessageStore. MiniGraph uses MessageStore, an in-memory data
structure, for synchronization among parallel workers, by caching
and managing pending messages. In contrast to worker-to-worker

Algorithm 2: A conceptual implementation of VMap
Scope Variables: local subgraph 𝐹𝑖 , intermediate data Π𝑖 .
Input: active vertex set Δ ∈ 2𝑉 , update function 𝑓𝑉 : 𝑉 → 2𝑉 .
Output: updated active vertex set Δ′ ∈ 2𝑉 .
1 Δ′ := ∅;
2 foreach 𝑢 in Δ do in parallel
3 Δ′ := Δ′ ∪ 𝑓𝑉 (𝑢 ) /* 𝐹𝑖 and Π𝑖 may be accessed. */

4 return Δ′;

message passing in multi-machine systems [24, 27], MessageStore
works more efficiently in a shared-memory environment.

We implement it as a compact variable-size array for space effi-
ciency (details in Appendix B of [7]). Intuitively, its space complex-
ity is closely related to the partitioning strategy: the more border
vertices/edges we have, the largerMessageStore is. Yet, it still takes
only a small portion in memory. For example, under various work-
loads over web-sk, it consumes 1.3% of the memory at the peak.

APIs for a hybrid parallel model. MiniGraph exposes PIE+, a uni-
fied interface that integrates VC with GC programming (see Sec-
tion 4). Users can not only parallelize sequential graph algorithms
underGC to simplify parallel programming, but also further explore
intra-subgraph parallelism under VC via the new interfaces.

Scheduler. Scheduler tracks and allocates threads in ThreadPool in
which each thread corresponds to a physical CPU core. It makes
decisions to assign physical threads to virtual workers to carry
out (parallel) computations on fragments. It also makes active ad-
justments to support two-level parallelism: when a thread is avail-
able, Scheduler allocates it to either a new worker by consuming
InboundQueue for speeding up inter-subgraph parallelism, or a
running worker for improving intra-subgraph parallelism.

StateManager. As computation progresses on the subgraphs of 𝐺 ,
StateManagermaintains a state machine to model their status. It is
a low-cost method for convergence detection, and it helps identify
chances to skip redundant I/O or computation. It is implemented
as a lightweight data structure and maintains only a few states per
subgraph, taking negligible space in memory.

We will present the details of the hybrid parallel model, two-level
parallelism and state manager in Sections 4, 5.1 and 5.2, respectively.

4 HYBRID PARALLEL MODEL
In this section we introduce the hybrid parallel model ofMiniGraph.
It aims to improve multi-core parallelism by enriching inter-
subgraph parallelism (GC) with intra-subgraph parallelism (VC).

Overview. Given a graph computational problem Q and a graph
𝐺 , MiniGraph processes subgraphs 𝐹0, 𝐹1, . . . , 𝐹𝑛−1 of 𝐺 . It assigns
virtual worker𝑊𝑖 to 𝐹𝑖 (𝑖 ∈ [0, 𝑛 − 1]). To simplify the discussion,
we adopt BSP [70] for synchronization. In each superstep, each
fragment is processed exactly once. When 𝐹𝑖 is loaded into the
memory,𝑊𝑖 is activated and allocated CPU resources by Scheduler.

Recall from Section 2 that underGC, users provide a PIE program
for Q, which consists of three sequential algorithms PEval, IncEval
and Assemble. Each worker𝑊𝑖 executes PEval on its local subgraph
𝐹𝑖 for partial evaluation; it then iteratively and incrementally refines
the partial results via IncEval on 𝐹𝑖 by treating messages between
workers as updates, until it reaches a fixpoint, followed byAssemble
to aggregate the partial results from all workers into the final answer.

4



Algorithm 3: PEval for WCC under PIE+.
Input: subgraph 𝐹𝑖 = (𝑉𝑖 , 𝐸𝑖 , 𝐿𝑖 ) .
Output: set CC𝑖 of connected components in 𝐹𝑖 .

Message Preamble: /* candidate set𝐶𝑖 includes all border nodes. */

. . . . . . . . . . . . . .VMap (𝑉𝑖 , . . . . . . . . . . .function. . . .(𝑣). .{ . . . . . . . . . . . . . . .𝑣.root := 𝑣;. . . . . . . . . . . . .return ∅;. . .}) ;
1 CC𝑖 := ∅;Π := 𝑉𝑖 ; /* Π is the set of unvisited vertices. */
2 while Π not empty do
3 find root vertex 𝑣𝑟 , such that 𝐿𝑖 (𝑣𝑟 ) = min𝑢∈Π 𝐿𝑖 (𝑢 ) ;
4 CC𝑖 := CC𝑖 ∪ {𝑣𝑟 }; remove 𝑣𝑟 from Π;
5 . . . . . . . . . . . . .Δ := {𝑣𝑟 };
6 . . . . . . . .while. . .Δ . . . . .not. . . . . . . . .empty . . . .do. . . . . .Δ :=. . . . . . . . . . . . .EMap (Δ,. . . . . . . . . . . . . .BFSRecur);

7 return CC𝑖 ;
Message Segment:𝑀𝑖 := { (𝑣, 𝐿𝑖 (𝑣.root) ) | 𝑣 ∈ 𝐶𝑖 }; 𝑓aggr := min;

8 Procedure . . . . . . . . . . . . . . . . . . . .BFSRecur (𝑢, 𝑣) :
9 if 𝑣 not in Π then return ∅;

10 remove 𝑣 from Π; 𝑣.root := 𝑣𝑟 ;
11 return {𝑣};

In principle, each𝑊𝑖 runs PEval and IncEval sequentially.
The key idea of the hybrid parallel model is two-level parallelism.

At the top level, it adopts GC to benefit from data-partitioned
inter-subgraph parallelism, parallelize existing sequential graph al-
gorithms, and speed up beyond-neighborhood computations. More-
over, within each subgraph, it parallelizes the execution of PEval
and IncEval by enforcing VC; that is, once a subgraph is in memory,
it leverages the shared-memory architecture of a single machine
and promotes intra-subgraph vertex/edge-level parallelism via VC.

Example 3: Continuing with Example 2, consider the execution of
WCC under GC. On subgraph𝐴 (see Figure 1), it initiates BFS from
root vertex with an initial label 1. It recurses as two independent
BFSes starting from both neighbors of vertex 1, i.e., vertices 2 and
4, which then proceed as BFSes from vertices 11 (subgraph 𝐶), 13
(subgraph 𝐵), and 5 (subgraph 𝐷), so on and so forth. If we execute
each recursion with 2 parallel threads, we get a 2× speedup. 2

PIE+. In light of this, we propose a new programming interface,
called PIE+. Given a problem Q,MiniGraph also takes algorithms
PEval, IncEval and Assemble for Q, and follows the same workflow
of GC for inter-subgraph parallelism. Moreover, it extends PIE
with two additional primitives, EMap and VMap, along the same
lines as the VC interface of Ligra [63]. These primitives make PEval
and IncEval parallel within each subgraph at the edge/vertex level.

EMap and VMap work on a set Δ of “active” vertices, which are
to be further processed. Intuitively, EMap and VMap implement
flatMap of functional programming, to execute an update function
at each active vertex 𝑣 in Δ andmoreover, “flat map” 𝑣 to a new set of
vertices that will remain active or get activated after the operation.

As shown in Algorithm 1, EMap takes as input Δ and an edge
update function 𝑓𝐸 . For each active vertex 𝑢 in Δ, EMap makes
updates along each of𝑢’s outgoing edge by applying 𝑓𝐸 , executed in
parallel. Here 𝑓𝐸 is a user-defined function. It processes an edge 𝑒 =
⟨𝑢, 𝑣⟩ from 𝑢, makes updates based on the data associated with 𝑒 , 𝑢
and 𝑣 , and returns a new (possibly empty) set of vertices that remain
active after the update. Moreover, 𝑓𝐸 may access the local subgraph
𝐹𝑖 and intermediate data structure Π𝑖 of PEval and IncEval.

Similarly,VMap takes Δ and a vertex update function 𝑓𝑉 as input.

Algorithm 4: IncEval for WCC under PIE+.
Input: subgraph 𝐹𝑖 = (𝑉𝑖 , 𝐸𝑖 , 𝐿𝑖 ) , CC𝑖 , incoming messages𝑀𝑖 .
Output: refined set CC𝑖 of connected components in 𝐹𝑖 .

1 . . . . . . . . . . . . . . . . . . . . . . .Δ = {𝑣 | 𝑣 ∈ 𝑀𝑖 };. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VMap(Δ,UpdateRoot) ;
2 return refine(CC𝑖 ) ; /* merge roots with the same label in CC𝑖 . */
Message Segment:𝑀𝑖 := { (𝑣, 𝐿𝑖 (𝑣.root) ) | 𝑣 ∈ 𝐶𝑖 };

3 Procedure . . . . . . . . . . . . . . . . . . . .UpdateRoot (𝑣) :
4 𝑣𝑟 := 𝑣.root;
5 while 𝑣𝑟 not in CC𝑖 do 𝑣𝑟 := 𝑣𝑟 .root;
6 update 𝑣.root := 𝑣𝑟 ; 𝐿𝑖 (𝑣𝑟 ) := min(𝐿𝑖 (𝑣𝑟 ), 𝑀𝑖 [𝑣 ] ) ;
7 return ∅;

As shown in Algorithm 2, it aims to parallelize operations that are
centered at each active vertex in Δ. Instead of working along edges,
𝑓𝑉 operates on each vertex 𝑢 ∈ Δ, processes and updates 𝑢 by
accessing 𝐹𝑖 and Π𝑖 , and returns an updated active vertex set.

Message passing. Similar to GC, PIE+ approaches inter-subgraph
synchronization via message passing. At each subgraph 𝐹𝑖 , it de-
clares (a) status variables 𝑥 for its border nodes, i.e., vertices that have
edges to other fragments (under edge-cut); and (b) an aggregate
function 𝑓aggr, e.g., min and max. Intuitively, the status variables
are candidates to be updated by the incremental step of IncEval,
and 𝑓aggr resolves conflicts when multiple workers assign different
values to the same variable 𝑣 .𝑥 for a border node 𝑣 of 𝐹𝑖 .

MiniGraph adopts a push-pull mechanism for workers to ex-
change messages through MessageStore. Right after worker𝑊𝑖

gets initialized, it checksMessageStore to pull a set𝑀𝑖 of messages,
which consists of updated status of the border nodes in 𝐹𝑖 . After
concluding computation,𝑊𝑖 collects the latest values 𝑣 .𝑥 for each
border node 𝑣 , and pushes them intoMessageStore for aggregation.
It inserts 𝑥 intoMessageStore[𝑣] if the entry is missing, and applies
𝑓aggr (MessageStore[𝑣], 𝑥) to resolve the conflict.

Example 4: We present a PIE+ program forWCC. It is the same as
the PIE program of [28] for WCC, except that it parallelizes BFSes
in PEval and IncEval within each subgraph via EMap and VMap.
We consider w.l.o.g. edge-cut partitions [12, 42], in which border
vertices are those that have edges to another fragment.

(1) PEval. As shown in Algorithm 3, at worker𝑊𝑖 , PEval computes
the connected components CC𝑖 of its local subgraph 𝐹𝑖 , the partial
result at 𝐹𝑖 . Here CC𝑖 is the set of root vertices that identify con-
nected components, referred to as CRoots. It declares (a) a link to its
CRoot, and (b) min as 𝑓aggr. PEval (a) initializes an empty CC𝑖 and
a set Π of unvisited vertices in 𝐹𝑖 (Line 1); and (b) conducts iterative
BFS until all vertices are visited, i.e., Π is emptied (Line 2–6). The
BFS finds its CRoot 𝑣𝑟 at the vertex with the lowest label (Line 3),
adds 𝑣𝑟 to CC𝑖 to identify a unique connected component (Line 4),
and sets the label of each descendant of 𝑣𝑟 to the label 𝐿𝑖 (𝑣𝑟 ) of the
CRoot (Line 5–6).MessageStore packs the smallest label for each
border node, accessible by workers in the next superstep.

This PEval differs from its counterpart given in [28] only in
the following, marked with dotted underlines. VMap is applied to
parallelize the initialization of status variables (Message Preamble).
EMap parallelizes its recursion (Line 6) to conduct a round of BFS.
It works on a set Δ of active vertices, which serves as the recursion
queue for BFS. Function BFSRecur is passed to EMap as the update
function 𝑓𝐸 . For each unvisited neighbor 𝑣 of the working vertex 𝑢

5



(Line 9), BFSRecur overwrites 𝑣 .root with 𝑢’s CRoot (Line 10), and
adds 𝑣 to the recursion queue by returning {𝑣} (Line 11). During
the process, EMap makes parallel visits to the neighboring vertices.

(2) IncEval. As shown in Algorithm 4, IncEval incrementally refines
the partial result CC𝑖 at 𝐹𝑖 , based on messages (updates) from other
subgraphs. IncEval (a) updates the label 𝐿𝑖 (𝑣𝑟 ) of each CRoot 𝑣𝑟 as
the smallest of its descendants in the same connected component
(Line 1); and (b) refines CC𝑖 by merging CRoots (𝑢𝑟 , 𝑣𝑟 ∈ CC𝑖 )
with the same label, and sets their root to the remaining CRoot
(Line 2). The messages are aggregated via min just like in PEval.

This IncEval differs from its counterpart of [28] in its VMap-
based implementation of local message propagation. Here function
UpdateRoot is passed to VMap as its update function 𝑓𝑉 . For each
vertex 𝑣 that receives messages, UpdateRoot works in parallel to
(a) find the CRoot 𝑣𝑟 of 𝑣 (Line 4–5), and (b) update the label of 𝑣𝑟
by incorporating the incoming messages (Line 6).
(3) When no messages are generated, Assemble collects CRoots
from all𝑊𝑖 ’s and counts the number of CRoots of distinct labels. 2

Partial results. Under GC, PEval computes partial result R𝑖 on the
local subgraph 𝐹𝑖 while IncEval refines R𝑖 incrementally based on
messages. In a distributed system like GRAPE, R𝑖 can be cached
in memory. However, inMiniGraph, it might exceed the memory
capacity to cache all partial results. ThusMiniGraph opts to persist
R𝑖 together with its subgraph 𝐹𝑖 . We embed R𝑖 as the metadata of
𝐹𝑖 , which will be discharged and loaded together with 𝐹𝑖 .

Writing PIE+ programs. Besides directly parallelizing an existing
PIE program (e.g., Example 4), one may cast aVC program into PIE+.
Given, e.g., a GAS program of PowerGraph [33], we may convert
it into a PIE+ program as follows: (1) initialize MessageStore for
caching incoming messages at all vertices; (2) recast Scatter with
VMap to generate the outgoing message for each vertex; (3) recast
Gather with EMap to perform the message passing via adjacent
edges of each vertex, and caching/aggregating them in the cor-
responding entries of MessageStore; (4) recast Apply with VMap
to update each vertex based on its own status and its aggregated
messages inMessageStore; (5) embed the implementation above in
PEval and IncEval; and (6) specify Assemble based on the output.

With PIE+, users may opt to use either VC or GC that fits their
applications and graphs the best. In [7], we give PIE+ programs for
single-source shortest path (SSSP), PageRank (PR), breadth-first
search (BFS), random walk (RW), and graph simulation (Sim).

5 EXECUTION MODEL
In this section, we present the execution model ofMiniGraph, with
resource scheduling (Section 5.1) and optimizations (Section 5.2).

5.1 Resource Scheduling
Given a partitioned graph,MiniGraph schedules its work as follows.
Workflow. Taking subgraphs 𝐹0, 𝐹1, . . . , 𝐹𝑛−1 of graph 𝐺 as input,
MiniGraph executes a PIE+ programA in BSP supersteps (rounds).
Each round iterates over all subgraphs: the first is a PEval round,
followed by IncEval rounds, on each subgraph. A new IncEval round
cannot start until the last round completes, and messages generated
in the current round are pulled when the next (IncEval) round starts.

Within a round, unprocessed on-disk subgraphs are loaded one

after another, while in-memory subgraphs are processed by con-
current workers. To process subgraph 𝐹𝑖 , its virtual worker𝑊𝑖 is
allocated 𝑝𝑖 physical threads from available ones in ThreadPool by
Scheduler;𝑊𝑖 then pulls messages generated in the last round, con-
ducts computations on 𝐹𝑖 , and aggregates new messages; it releases
resources back to Scheduler before it is deactivated.

The scheduling problem. Scheduler has to make two decisions
at runtime: (1) when to load and process a subgraph, and (2) how
to allocate resources to maximize two-level parallelism. Making
optimum decisions for these is, however, highly nontrivial.
A cost model. Given a PIE+ program A, we train a cost function
𝐶A to estimate the execution time of worker𝑊𝑖 on subgraph 𝐹𝑖 .
We adapt the cost function 𝐶APIE of [25] for PIE program APIE:

𝐶APIE (𝐹𝑖 ) = Σ𝑣∈𝐹𝑖ℎAPIE (𝑥𝑖 (𝑣)), (1)
where for a vertex 𝑣 in 𝐹𝑖 ,ℎAPIE is a learnable polynomial regression
model defined over a vector 𝑥𝑖 (𝑣) of metric variables. Here 𝑥𝑖 (𝑣)
takes into account the average in/out-degree of all vertices in 𝐺 ,
and various structural information of 𝑣 , e.g., 𝑣 ’s in/out-degree in 𝐹𝑖
and 𝐺 , and the number of 𝑣 ’s mirror across all subgraphs of 𝐺 .

Model𝐶APIE has proven accurate in predicting the computational
cost of a PIE program, because polynomials can approximate a
continuous function defined on a closed interval [73]. Extending
𝐶APIE , we define 𝐶A for a PIE+ program A as

𝐶A (𝐹𝑖 , 𝑝𝑖 ) =
∑︁
𝑣∈𝐹𝑖

[ℎseqA (𝑥𝑖 (𝑣)) +
ℎ
para
A (𝑥𝑖 (𝑣))

min{𝑝𝑖 , ⌊𝑑𝑖 ⌋}
], (2)

where 𝑝𝑖 denotes the number of allocated threads for worker𝑊𝑖 ,
𝑑𝑖 is the average degree of vertices in 𝐹𝑖 , and ℎ

seq
A and ℎ

para
A are

learnable models like ℎAPIE . Intuitively, the cost ofA is broken into
ℎ
seq
A for unparallelizable computations and ℎparaA for parallelizable

operations (those defined in EMap and VMap). When more cores 𝑝𝑖
are allocated,ℎparaA may get a linear speedup subject to maximum𝑑𝑖 .

Model 𝐶A generalizes 𝐶APIE by extending the data-partitioned
parallelism of GC and adapting to the unique two-level parallel exe-
cution model ofMiniGraph. It inherits two key properties of𝐶APIE ,
which have been verified empirically in [25]: (1) 𝐶A depends on
individual algorithmA, and (2) it remains quite accurate on graphs
that are of the same type (e.g.,Web graphs) as training graphs, since
its regression model assesses the impact of metric variables, and the
variables “characterize” topological features of the type of graphs.

We train the polynomial regression models ℎseqA and ℎparaA with
training samples collected from historic running logs. The cost
model of [25] is trained with stochastic gradient descent (SGD)
[15], which requires a collection of running logs with A as a priori.
In the lack of the training data, 𝐶A may not be accurate. To cope
with this, we develop a training procedure to handle cold starts. We
follow incremental SGD [14], initializing the model with default
weights and updating it as more running logs are collected.
(1) Initialization. Given A without historic running logs, we set

𝐶A (𝐹𝑖 , 𝑝𝑖 ) =
∑︁
𝑣∈𝐹𝑖

𝑑+
𝑖
(𝑣)

min{𝑝𝑖 , ⌊𝑑𝑖 ⌋}
,

where 𝑑+
𝑖
(𝑣) denotes the out-degree of vertex 𝑣 in subgraph 𝐹𝑖 . We

heuristically take this as pre-trained weights for incremental SGD.
Intuitively, without prior knowledge about A, we assume that the
cost of A on 𝐹𝑖 is proportional to the number of edges in 𝐹𝑖 , and
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that operations in A are fully parallelized with EMap and VMap.
(2) Sample collection. We collect training data for each run of A
over subgraph 𝐹𝑖 . A sample includes: (a) the metric variables 𝑥𝑖 (𝑣)
of each active vertex 𝑣 in 𝐹𝑖 , which “characterize” their individual
topological structures; (b) the thread allocation 𝑝𝑖 ; and (c) its mea-
sured computational cost 𝑡𝑖 . After rounds ofA execution, we batch
the new samples and feed them into the model.
(3) Training. Using mean square error as the loss function, incre-
mental training computes the gradients and updates the model
accordingly. It iterates through the new training data only, and we
do not shuffle the new with the previous seen samples. The model
is continuously trained and updated at backend at a small cost.

Remark. We have experimented with 𝐶A and two alternative cost
models: (a) a polynomial regression model with fewer metric vari-
ables and (b) a multi-layer perceptron. We find that (1) once trained
for algorithm A, 𝐶A works well on graphs of the same type, echo-
ing the observation of [25]; and (2) compared to model (a) and (b),
𝐶A strikes a better balance among accuracy, generalizability, and
training cost. Due to lack of space, we present the results in [7].

Problem formulation. With 𝐶A , we model the scheduling problem
as an optimization problem. Given subgraphs 𝐹0, 𝐹1, . . . , 𝐹𝑛−1 of 𝐺
and an𝑚-core machine with memory size 𝜂, it is to find an optimal
scheduleS = (𝑡, 𝑝), where 𝑡𝑖 ∈ 𝑡 (resp. 𝑝𝑖 ∈ 𝑝) denotes the start time
(resp. thread allocation of𝑊𝑖 ) for 𝑖 ∈ [0, 𝑛). Its objective function is

arg min
S

max
𝑖∈[0,𝑛)

{𝑡𝑖 +𝐶A (𝐹𝑖 , 𝑝𝑖 )}. (3)

It is to minimize themakespan of S, i.e., the overall completion time
of all workers. At any point, a valid schedule is subject to three
constraints: (1) the consumed memory cannot exceed 𝜂; (2) the total
thread allocation cannot exceed𝑚; and (3) the start time 𝑡𝑖 cannot be
set before 𝐹𝑖 is fully loaded into the memory, for all 𝑖 in [0, 𝑛). Note
that the final constraint takes into account the I/O cost under the
memory capacity 𝜂. It models the behavior of Loader (see Section 3),
which loads fragments continuously as long as 𝜂 is not exhausted.

Its decision problem, denoted by DSP, is to decide, given the
input and a deadline 𝐵, whether there exists a valid schedule S
with makespan at most 𝐵. The problem is intractable; it subsumes
the NP-complete problem of malleable parallel task scheduling [48].

Theorem 1: DSP is NP-complete. 2

Proof sketch: DSP is in NP since one can guess a schedule and
check in PTIME whether it is valid and its makespan is at most 𝐵.
We show that it is NP-complete by reduction from the set partition
problem, which is known NP-complete [31] (see [7] for a proof). 2

Scheduling strategy. Due to the intractability, Scheduler adopts a
lightweight strategy. Offline for each subgraph 𝐹𝑖 , it collects its size
information and assigns 𝐹𝑖 a number 𝑝𝑖 . Then at runtime, it loads
pending subgraphs and launches new workers greedily, such that
at least 𝑝𝑖 threads are allocated to𝑊𝑖 . If idle threads exist with no
available worker to launch, they are reallocated to active workers.

Intuitively, we strike a balance between inter-subgraph paral-
lelism and intra-subgraph parallelism. It ensures that each subgraph
is allocated at least 𝑝𝑖 threads. Then whenever a set 𝑇 of threads
gets freed, we prioritize pending subgraphs 𝐹𝑖 if |𝑇 | ≥ 𝑝𝑖 . We set
𝑝𝑖 heuristically to estimate the optimal allocation for worker𝑊𝑖 ,
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Figure 3: WCC on𝐺 with the two-level parallel execution model.

given the CPU and memory constraint. This strategy satisfies 𝑝𝑖
for𝑊𝑖 greedily and thus approximates the optimal schedule.

Tentative resource allocation. Scheduler allocates resources based
on the subgraph size and the memory size 𝜂. It sets 𝑝𝑖 = ⌈ 𝑠 (𝐹𝑖 )𝜂 𝑚⌉
for worker𝑊𝑖 , where 𝑠 (𝐹𝑖 ) is the binary size of 𝐹𝑖 . Intuitively, 𝑝𝑖
indicates the minimum number of threads for𝑊𝑖 to process 𝐹𝑖 ,
to strike a balance between computing and memory resources.
Following multi-resource scheduling [34], all threads are allocated
before the memory gets exhausted, prioritizing CPU utilization.

Greedy subgraph processing. At runtime, Scheduler keeps track of
a list of pending subgraphs, sorted by 𝐶A (𝐹𝑖 , 𝑝𝑖 ), the estimated
computational cost given their tentative thread allocations. To select
one for processing, it prioritizes the most computationally heavy
one whose tentative allocation can be satisfied. When Scheduler is
triggered by an event that 𝑡 threads are freed by a worker, it is to
load 𝐹𝑖 with the highest 𝐶A (𝐹𝑖 , 𝑝𝑖 ) as long as 𝑝𝑖 ≤ 𝑡 .

The intuition behind such ordering is to mitigate stragglers at the
end of each superstep. Considering the sublinear speedup of intra-
subgraph parallelism (Equation 2), prioritizing larger subgraphs
can further promote inter-subgraph parallelism, since we have a
better chance of overlapping them with more and shorter loads.

Intra-subgraph parallelism. When the unallocated threads cannot
satisfy the tentative allocation of any pending subgraph, Scheduler
allocates these free threads to active workers, one at a time, as it
thrives to keep all CPU cores busy. It decides the receiving worker
based on cost analysis. (1) With pending subgraphs, it estimates
Δ𝑖 = 𝐶A (𝐹𝑖 , 𝑝𝑖 ) −𝐶A (𝐹𝑖 , 𝑝𝑖 + 1) for all active workers, and selects
𝑊𝑗 with the highestΔ 𝑗 , i.e.,𝑊𝑗 gets themost speedup from the extra
thread. (2) With no subgraph pending processing for the round, it
selects𝑊𝑗 with the maximum𝐶A (𝐹 𝑗 , 𝑝 𝑗 ) to improve the straggler.

Such reallocations are temporary; whenever a new worker𝑊𝑗

becomes active, these available threads are retracted by Scheduler
and reassigned to𝑊𝑗 to meet its demand of 𝑝 𝑗 threads.

Example 5: Continuing with Example 3, we computeWCC over
𝐺 (Figure 1a) on a 4-core machine. Suppose that each subgraph
takes 1 time unit to load/write, and each message passing takes 1
time unit. The tentative allocation assigns 2 threads to each worker.
As shown in Figure 3, WCC passes all 32 message in 19 time units,
leveraging both pipelined processing and two-level parallelism. 2
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Figure 4: The state diagram of a worker.

5.2 System Optimizations
We now present the unique optimization strategies ofMiniGraph.

Recall Example 5. In Figure 3, Subgraph 𝐴 is not updated in both
IncEval steps, and its worker receives no messages (updates); thus
it requires no further processing, and there is no need to even load
Subgraph𝐴. To reduce the unnecessary I/O for loading/discharging
Subgraph 𝐴, MiniGraph employs (a) a list M of flags that helps
track message exchanges among workers, and (b) a lightweight
state machine for modeling the progress of each worker. BothM
and state machine are maintained by StateManager.
Message tracking. StateManager builds a list M of flags, one for
each worker to indicate whether the worker has any messages. It
setsM[𝑖] true if worker𝑊𝑖 has at least one pending update to pull
fromMessageStore. Otherwise,𝑊𝑖 requires no incremental work to
be done, and thus IncEval can be safely skipped in the next round.

Example 6: Continuing with Example 5, the step-by-stepWCC
execution is shown in Figure 3. Before starting Step IncEval 1, the
flags are [F,T,T,T] for Subgraph 𝐴, 𝐵,𝐶 and 𝐷 , respectively. Note
that Subgraph 𝐴 receives no messages in this round, and hence its
flag is F. Similarly, the flags are [F,F,F,T] for Step IncEval 2. 2

Worker states and state transitions. We use a finite state machine to
model the progress at each worker𝑊𝑖 , and flagM[𝑖] to trigger state
transitions of𝑊𝑖 . As shown in Figure 4, at any point, a worker is in
one of the five states: Active, Converged, PendingEval, UnderEval,
and Discharging. The first two indicate that the corresponding
subgraph is on-disk, while the rest are in-memory states.

For a PEval or IncEval round, worker𝑊𝑖 traverses all five states.
As shown in Figure 4, it starts from Active, indicating that𝑊𝑖 re-
quires further computation (e.g., with unconsumed updates). Then,
(1) after its subgraph data 𝐹𝑖 is loaded into the memory by Loader,
𝑊𝑖 becomes PendingEval, meaning that𝑊𝑖 is ready to run and re-
quests thread allocation; (2)𝑊𝑖 turns to UnderEval, after it is taken
by Evaluator and is under active computation; (3) when𝑊𝑖 con-
cludes with changes made to 𝐹𝑖 , its metadata (e.g., status variables,
partial results) and messages aggregated inMessageStore,𝑊𝑖 is set
toDischarging; and (4) once 𝐹𝑖 is fully persisted on disk,Discharger
releases its memory space and sets𝑊𝑖 to Converged, indicating
that it is done for the round.MiniGraph concludes the round when
all workers get past UnderEval. If there are messages cached in
MessageStore, MiniGraph (5) resets Converged workers back to
Active, and starts a new round of (IncEval) computation. Otherwise,
MiniGraph (6) calls Assemble to produce the final results.

Shortcuts in state transitions. Under certain conditions, some states
in a round of computation can be skipped without affecting the
correctness. That is, MiniGraph can take some “shortcuts” in state
transitions, and reduce unnecessary computation and I/O. Below
are example shortcuts identified by StateManager, marked as bold
arrows in Figure 4. Consider worker𝑊𝑖 with its flagM[𝑖].

IncEval 1

Converged PendingEval

Active Discharging

Time: 7   Load B

Converged Converged

Discharging Converged

Time: 12   No I/O

Converged Converged

PendingEval Active

Time: 12   Load D | Discharge C
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Converged Converged

Converged PendingEval

Time: 13   No I/O

Converged Converged

Converged Discharging

Time: 15   Trigger Assemble
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Time: 9   Load C | Discharge D

Converged Active

Active PendingEval

Figure 5: Optimized WCC execution on𝐺 with shortcuts.

Shortcut (A). To start of a round of IncEval computation, the state
of𝑊𝑖 is typically reset to Active following transition (5). If M[𝑖] =
F, however, we may keep𝑊𝑖 in Converged state since it requires
no further processing. That is, we can skip handling subgraph 𝐹𝑖
in the round. This shortcut is frequently exploited when, e.g., the
input graph is not well-connected and 𝐹𝑖 is “isolated”.
Shortcut (B). MiniGraph starts a new round of IncEval as soon as
all workers finish the current round (i.e., get past UnderEval). If𝑊𝑖

is still in Discharging, i.e., if its changed 𝐹𝑖 is not yet fully persisted
onto the disk,𝑊𝑖 is set to PendingEval directly, such that it starts
the new round without going through the disk. This shortcut is
exploited at the end of each round and substantially reduces I/O.
Shortcut (C). When𝑊𝑖 completes with no changes to 𝐹𝑖 or its meta-
data,𝑊𝑖 skips Discharging and is set to Converged directly, avoid-
ing redundant disk writes. This shortcut is effective for, e.g., SSSP.

Example 7: Continuing with Example 5–6, we show execution
ofWCC in Figure 5 by exploiting shortcuts in state transitions (in
bold state labels). PEval execution remains the same as in Figure 3.

The start of Step IncEval 1 (Time 7) sees two shortcuts: (1)
worker 𝐴 takes Shortcut (A) to skip computation entirely; and
(2) worker 𝐷 skips discharging/loading by taking Shortcut (B); it
enters PendingEval directly for the next round of IncEval. Because
of the two shortcuts, Step IncEval 1 takes 5 time units to complete
(Time 7–12), as opposed to 7 time units (Time 7–14) in Example 5.

Similarly, we optimize Step IncEval 2. It takes 3 time units (Time
12–15), a 40% reduction from 5 units (Time 14–19) in Example 5. 2

6 EXPERIMENTAL EVALUATION
Using real-life graphs, we evaluatedMiniGraph for its (1) efficiency,
(2) scalability, (3) resource scheduling and (4) performance.

Experimental setup. We start with the settings.
Datasets. We used five real-life and synthesized datasets (Table 2).
Among these, datagen, clueWeb and hyperlink12 exceed the
memory capacity of our testbed. Here datagen is a synthesized
dataset in the LDBC [39] benchmark suite; and hyperlink12 is
sampled from hyperlink [2] via BFS sampling [38]. We used edge-
cut [47] as the default partitioner, and tested other partitioners.

We report additional results over three small real-life graphs of
different types (e.g., road network, network topology) in [7].

Baselines. We evaluated three out-of-core systems as baselines: Grid-
Graph [83], GraphChi [45] and XStream [62]. GridGraph is the state-
of-the-art, assuming an off-the-shelf hardware platform. We did
not test Mosaic [51] since it requires an Intel Xeon Phi coprocessor,
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Name Type |𝑉 | |𝐸 | MaxDegree Raw Data

friendster [6] social network 65.6M 1.8B 5124 30.14GB
web-sk [61] Web 50M 1.9B 8.5M 32GB

datagen [10, 39] synthetic 29M 2.6B 2288 75GB
clueWeb [61] Web 1.7B 7.9B 6.4M 137GB

hyperlink12 [2] Web 7B 7.6B 5.1M 155GB

Table 2: Graph datasets.

which has been discontinued since 2018 [55]. We also omitted in-
memory systems (e.g., [50, 57, 63, 78, 80]) since MiniGraph targets
applications when the input graph cannot fit into the memory.

We tested four variants ofMiniGraph: (1)MiniGraphSeq, which
exposes PIE as interface without EMap and VMap (Section 4).
(2) MiniGraphNoShort, which disables shortcuts (Section 5.2). (3)
MiniGraphVCut andMiniGraphHCut, which use vertex-cut [5] and
hybrid-cut [19], respectively, as graph partitioner.

We also compared with GraphScope [24] and Gluon [21], which
use multiple machines, not a single machine asMiniGraph.

Algorithms and queries. We ran PIE+ programs for WCC, SSSP,
PR, BFS, RW and Sim (Section 4) [7]. The first five are included in
various benchmarks [8, 13]. For baselines, we used their out-of-box
implementations. No baseline supports Sim out-of-box. We imple-
mented the VC-based Sim algorithm of [29] on GraphChi. However,
the algorithm cannot be implemented on GridGraph or XStream
without changing their internal working, because a necessary
global storage is not supported by the APIs of either system.

For each input graph for SSSP and BFS, we randomly picked 10
vertices and used them as sources. For RW, we initiated 100 walkers
randomly, each taking at most 10 steps. For Sim, we randomly gen-
erated 20 query patterns, each of which has 6 vertices and 10 edges.

We deployed the single-machine systems on a workstation run-
ning Ubuntu Server 20.04 LTS, powered with an Intel Core i9-7900X
CPU @3.30GHz and 64GB of DDR4-2666 memory. The CPU has a
13.75MB LLC, shared among 10 cores (20 hyperthreads).

Unless stated otherwise, we set 𝑛 partitions as reported in Table 4
such that we have 𝑝𝑖 = 4 by default (see Section 5). We set a
different 𝑛 for PR (s.t. 𝑝𝑖 = 10), guided by our experiments with
varying 𝑛 (see [7] for details). Graphs are loaded from a 1TB WD
Blue WDS100T2B0A SATA SSD, whose average sequential read
throughput is 560MB/s. Each experiment was repeated 5 times; we
report the average here. We report results for some algorithms on
some graphs; the other results are consistent and are reported in [7].

Experimental results. We next report our findings.

Exp-1: Efficiency. We first evaluated the efficiency and I/O of
MiniGraph versus out-of-core systems. Some experiments are con-
ducted under amemory budget, i.e., the ratio of the availablememory
to the size of the raw input. For instance, a 50% memory budget
means that exactly half of the graph can be held in memory. We
used Linux cgroups to enforce the memory budget, similar to [11].

SSSP. For SSSP over different graphs, Table 3 reports the number
of supersteps, the volume of disk read traffic, I/O reduction from
shortcuts, the average CPU utilization, the correlation coefficient 𝑟
between real-time I/O and CPU usage, and the CPU cache hit rate.
Table 3 only shows comparison with GridGraph, the best perform-
ing baseline. Table 4 shows the performance of all the systems.
(1) MiniGraph performs the best over all workloads. Over two real-
life large clueWeb and hyperlink12,MiniGraph performs substan-

Dataset Metric SSSP WCC PR

MiniGraph GridGraph MiniGraph GridGraph MiniGraph GridGraph

friendster

# Supersteps 8 32 6 21 8 10
Disk Read (GB) 78 115.1 50 135 107 160
Shortcut I/O (GB) -12 N/A -22 N/A -10.4 N/A
Avg. CPU Util. 33.74% 4.45% 48.2% 6.83% 68.46% 62.38%

I/O-Compute Corr. 0.095 -0.113 0.163 -0.202 0.185 -0.156
Cache Hits 45.33% 9.59% 48.25% 12.04% 34.8% 36.2%

web-sk

# Supersteps 10 63 9 120 15 20
Disk Read (GB) 112.5 232 42 367 87 232
Shortcut I/O (GB) -30.9 N/A -24.6 N/A -133.9 N/A
Avg. CPU Util. 15.76% 5.83% 25.04% 5.16% 42% 42%

I/O-Compute Corr. 0.008 0.003 0.013 0.009 0.082 -0.039
Cache Hits 50.89% 6.37% 37.42% 11.63% 50.22% 46.04%

Table 3: Runtime statistics for SSSP, WCC and PR.

tially better than all the baselines. With the memory capacity being
only 47% (resp. 41%) of clueWeb (resp. hyperlink12), it outper-
forms GridGraph, by 4.6× (resp. 3.2×). Moreover, GraphChi and
XStream are not able to handle the two large graphs (Table 4). Over
the large synthetic datagen, the improvement is relatively mod-
erate (1.5×), since the graph is extremely sparse and the VC of
GridGraph does not incur significant I/O. The results are consistent
over small graphs, which justifies memory budgeting, a common
practice for benchmarking out-of-core systems (e.g., [11]).
(2) With a 50% memory budget on friendster,MiniGraph beats
GridGraph, GraphChi and XStream by 1.5×, 2.7× and 15.2×, re-
spectively. It is 2.8×, 3.5× and 28.9× faster on web-sk, a better
improvement, because web-sk is sparser and has a larger diame-
ter. As remarked earlier, the VC of the baselines supports within-
neighborhood operations only, and requires more supersteps to con-
verge on graphs with larger diameters. GridGraph, e.g., takes 32 su-
persteps on friendster and 63 on web-sk. In contrast,MiniGraph
supports beyond-neighborhood computations via its hybrid parallel
model. It takes 8 supersteps on friendster and 10 on web-sk. This
justifies the need for GC and two-level parallelism.

Note that over friendster, GridGraph takes 4× the supersteps
ofMiniGraph, while its execution time is 2.7×. The main reason lies
in their different parallel models; a GC superstep is quite different
from a VC superstep as it processes a subgraph. MiniGraph gener-
ally takes more computationally heavy supersteps than GridGraph
does. This said, its superstep progresses the computation further
with each superstep, and reduces the overall work required.

(3)MiniGraph also substantially reduces disk I/O (Table 3). It gener-
ates 32.3% and 51.6% less disk read than GridGraph on friendster
and web-sk, respectively. More specifically, (a) shortcuts account
for 32.3% and 25.8% of the I/O reduction on the two graphs, respec-
tively. (b) The rest of I/O reduction roots in the reduced supersteps.
(4) The average CPU utilization of MiniGraph is 29.3% (resp. 9.9%)
higher than GridGraph on friendster (resp. web-sk). GridGraph
exhibits negative correlations (𝑟 <−0.1) between I/O and CPU usage,
indicating that CPU may starve when the system is busy at loading
data. In contrast, it is 0<𝑟 <0.1 for MiniGraph; that is, its I/O does
not block computations. These justify the pipelined architecture.
(5) MiniGraph has a much better CPU cache locality than Grid-
Graph. It achieves a 45% cache hit rate on friendster and 51%
on web-sk, while it is 10% for GridGraph at best (Table 3). This is
because MiniGraph supports inter-subgraph parallelism, while VC
systems (e.g.,GridGraph) frequently access all neighbors of each ver-
tex, which inevitably incurs random reads across the entire graph.
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Data Memory
Budget

#Partitions
(PR/Others)

SSSP WCC PR

MiniGraph GraphChi GridGraph XStream MiniGraph GraphChi GridGraph XStream MiniGraph GraphChi GridGraph XStream

friendster 50% (15.07GB) 4/10 201.8 535 (2.7×) 293.1 (1.5×) 3061 (15.2×) 171.8 1636 (9.5×) 204.7 (1.2×) 2037 (11.8×) 190.104 450.7 (1.9×) 485.3 (1.9×) 2685 (11.3×)
web-sk 50% (16GB) 4/10 326.4 1140 (3.5×) 917.9 (2.8×) 9437 (28.9×) 172 620.1 (3.6×) 704.6 (4.1×) 4056 (23.5×) 248.3 2288 (9.2×) 395 (1.6×) 2903 (11.7×)

datagen 85% (64GB) 4/4 85 2483.4 (29×) 127.1 (1.5×) 2350 (27.6×) 80.4 2688.6 (33×) 182.35 (2.3×) 6124 (76.1×) 306.4 1104.03 (3.6×) 1066 (3.5×) 3434.7 (11.2×)
clueWeb 47% (64GB) 4/10 2514 / 11534 (4.6×) / 2742 / 11665 (4.3×) / 2022 / 3803 (2.1×) /

hyperlink12 41% (64GB) 4/4 150.1 / 475.6 (3.2×) / 1940 / 12570 (6.5×) / 1553.3 / 5209 (3.4×) /

Table 4: Execution time for SSSP, WCC and PR (in seconds). “/” denotes that the experiment could not finish within 4 hours.

(6)MiniGraph also performs substantially better than its variants.
We defer a detailed discussion to the case ofWCC below.

WCC. As shown in Tables 3–4, MiniGraph beats all the baselines
forWCC over all graphs. (1) It is up to 6.5×, 33.0× and 76.1× faster
than GridGraph, GraphChi and XStream, respectively; note that for
GraphChi and XStream, 33.0× and 76.1× do not aggregate results on
clueWeb and hyperlink12, since the two systems could not handle
the two large graphs (Table 4). (2) Over web-sk, it takes only 7.5%
supersteps and 28.9% of disk read of GridGraph; moreover, it has
better average CPU utilization (+41.4%) and cache locality (+36.2%).
These lead to 4.1× performance improvement. (3)MiniGraph incurs
62.9% (resp. 88%) less disk read on friendster (resp. web-sk), with
16.3% (resp. 11.4%) reductions from shortcuts.

MiniGraph consistently beats its variants. As shown in Figure 6a,
(a) It speeds up MiniGraphSeq by 61.0% and 78.1% on friendster
and web-sk, respectively. This shows the benefit of its hybrid
model that exploits intra-subgraph parallelism to improve multi-
core parallelism. The hybrid model works better on denser graphs,
which often allow a higher inherent intra-subgraph parallelism, to
which EMap and VMap are more effective. (b) MiniGraph beats
MiniGraphNoShort by 1.18× on average. The improvement is moder-
ate, since all shortcuts apply to IncEval only, while PEval is the most
costly for WCC. They reduce I/O by 44% on average, yet the effect
gets diluted by other factors, e.g., stragglers. (c) Shortcuts are less
effective over well-connected graphs (e.g., a 12% improvement over
friendster), but are better over more “isolated” web-sk (36%).

Figure 6b shows the disk I/O and CPU utilization of MiniGraph
and GridGraph over clueWeb. It verifies thatMiniGraph overlaps
I/O and CPU operations, and justifies its pipelined architecture.

PR. As reported in Table 4, (1) MiniGraph is 1.6–3.5× faster than
GridGraph over all graphs, the best-performing baseline, although
PR fits its VCmodel. (2) On friendster (resp. web-sk),MiniGraph
incurs 33.1% (resp. 45.6%) less disk read traffic than GridGraph, with
19.6% (resp. 28.6%) reductions from shortcuts. These are higher than
SSSP andWCC, since we use larger fragments in PR.

Sim. As shown in Figure 6c for Sim on friendster and web-sk, on
average MiniGraph beats GraphChi by 2.2× and 1.6×, and reduces
I/O traffic by 81% and 77.4%, respectively. One reason is that its hy-
brid model can support a more efficient Sim algorithm (see Appen-
dix A.1 of [7]). Its complexity is𝑂 (( |𝐸 | + |𝑉 |) ( |𝐸𝑄 | + |𝑉𝑄 |)), where
|𝐸 | and |𝑉 | (resp. |𝐸𝑄 | and |𝑉𝑄 |) denote the size of edges and vertices
of𝐺 (resp. pattern𝑄), respectively. In contrast, GraphChi can only
use the Sim algorithm [29] under VC and take𝑂 ( |𝐸 |2 ( |𝑉𝑄 | + |𝐸𝑄 |))
time. This further justifies the need for supporting GC.

BFS and RW. Figure 6d reports the speedup of MiniGraph for BFS
and RW versus GridGraph. Consistent with the other algorithms,
MiniGraph beats all the competitors. For BFS, MiniGraph is 1.2–
1.7× faster than GridGraph over various graphs. It is at least 1.5×

better over more skewedWeb graphs (i.e., web-sk and clueWeb). Al-
though the GC and VC algorithms for RW have similar complexity
bounds, the improvement is still quite evident (52.5% on average).

HDD vs. SSD. We also tested the impact of using HDD as the sec-
ondary storage. When replacing SSD with a 3.6TB Seagate HDD,
the average read throughput drops from 560MB/s to 125MB/s, and
all the systems get slower, as expected. On friendster, e.g., it
is slowed by 2.6×, while it is 3.3× and 2.9× for GridGraph and
GraphChi, respectively. This is because (a)MiniGraph incurs less
I/O traffic (see Table 3), and (b) it issues a small number of bulk I/O
requests, and works well with HDD that has a high seek cost.

Exp-2: Scalability. Under 50% memory budget, we evaluated the
scalability of MiniGraph with the size |𝐺 | of graphs 𝐺 and the
number𝑚 of CPU cores. We report the results ofWCC and PR; the
results of the other algorithms are consistent.
Varying |𝐺 |. We sampled graphs 𝐺 from large clueWeb using Edge
Sampling [38], with a scale factor 𝛿 that controls the fraction of
edges to be sampled. As shown in Figure 6f when varying 𝛿 from
0.4 to 1.0 forWCC, (1)MiniGraph scales well with |𝐺 |. It takes 2.3×
longer, while it is 2.6× for GridGraph. (2) MiniGraph also scales
better than its variantsMiniGraphSeq (3.5×) andMiniGraphNoShort
(3.16×). These further verify the effectiveness of our hybrid parallel
model and optimization strategies. (3) When |𝐺 | grows 2.5×,
MiniGraph incurs 2.29× I/O traffic, by its shortcut optimizations.

Varying𝑚. Varying the number 𝑚 of cores from 4 to 20, we ran
WCC and PR on web-sk. As shown in Figure 6g, (1) MiniGraph
scales well with𝑚. (2) It scales better than GridGraph, which does
not improve much (up to +4.3%) when𝑚 varies from 8 to 20. This is
because GridGraph becomes I/O-bound when𝑚 ≥ 8 (see also our
findings in Figure 6b). (3) It also scales better thanMiniGraphSeq,
which barely improves when𝑚 ≥ 4 for the lack of intra-subgraph
parallelism. These also justify the need for a hybrid parallel model.

Exp-3: Resource scheduling. We evaluated the scheduling strat-
egy by testing MiniGraph in different settings of (1) thread alloca-
tion 𝑝𝑖 , (2) the number 𝑛 of partitions, and (3) graph partitioners.

Varying 𝑝𝑖 . We first tested the impact of 𝑝𝑖 , the number of threads
allocated to processing a subgraph. Over clueWeb, Figure 6h reports
how WCC and PR works with varying 𝑝𝑖 . For each graph parti-
tioning, we mark its tentative allocation 𝑝𝑖 (Section 5) with colored
points. As shown there, 𝑝𝑖 strikes a balance between the two levels
of parallelism and improves the overall multi-core parallelism, by
selecting a near-optimal value for 𝑝𝑖 based on 𝑛 and 𝐺 .

Varying 𝑛. The number 𝑛 of partitions impacts the inter-subgraph
parallelism ofMiniGraph. Varying 𝑛 from 2 to 64 on web-sk, Fig-
ure 6i shows its impact onWCC and PR. (1) For VC-based PR, its
optimal 𝑛 is 4, which minimizes fragmentation while keeping the
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Figure 6: Efficiency, scalability, and resource scheduling of MiniGraph, and its performance vs. multi-machine systems.

pipeline working. (2) MiniGraphSeq is very slow under a small 𝑛,
as its CPU usage is limited by the low inter-subgraph parallelism.
(3) For GC-basedWCC, the optimal 𝑛 is 16. Finding this optimum
value requires a careful cost analysis (Section 8).

Impact of partitioners. We tested WCC and PR using different
partitioners with 𝑛 = 4. As reported in Figure 6j, MiniGraph beats
all the baselines regardless of the partitioner used. Running PR on
large clueWeb, for example, MiniGraphVCut and MiniGraphHCut
outperform GridGraph by 2.71× and 2.98×, respectively.

Exp-4: Single-machine vs. multi-machine. We also evaluated
the capacity ofMiniGraph for graph analytics with a singlemachine
versus multi-machine systems GraphScope and Gluon. To make a
uniform testing environment, we deployed them in the cloud.

Execution time. Figure 6k reports the performance of the systems
for Sim and PR over friendster. (1) For Sim, we used 8-vCPU
64GB-memory instances for all three systems since GraphScope and
Gluon require more working memory. Gluon (resp. GraphScope)
runs out-of-memory with fewer than 6 (resp. 8) nodes. MiniGraph,
using a single instance, outperforms Gluon with up to 12 nodes by
29.3–46.3%. This further justifies the need for GC. While Graph-
Scope takes less computation time, it requires an additional 200+s

for preprocessing, which is not counted in Figure 6k. (2) For PR,
MiniGraph runs on a single 8-vCPU 32GB-memory instance. Gluon
uses a varying number of instances of the same configuration.
GraphScope uses multiple 8-vCPU 64GB-memory instances, be-
cause it requires more than 32 GB in all cases of the experiment. Yet
it still runs out-of-memory with 2 nodes. We find thatMiniGraph
performs comparably to a 4-node (resp. 6-node) deployment of
GraphScope (resp. Gluon), and beats Gluon with fewer than 4 nodes.

Cost effectiveness. Figure 6l depicts the relative monetary cost of
multi-machine systems for running Sim and PR over friendster,
taking the cloud spending of MiniGraph as baseline. (1) While
Gluon and GraphScope get faster with more nodes, they spend
more. This echoes the observation of [53] that multi-machine par-
allelism is not always cost-effective. (2) GraphScope (resp. Gluon)
pays at least 5.3× (resp. 13.9×) more than MiniGraph for Sim, and
costs 3.0× (resp. 3.7×) more for PR. This further justifies the need
for a single-machine system to save cost for small companies.

Summary. We find the following. (1) With the pipelined archi-
tecture and two-level parallelism,MiniGraph consistently outper-
forms the prior single-machine systems under all out-of-core work-
loads. It is up to 6.5×, 33.0× and 76.1× faster than GridGraph,
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GraphChi and XStream, respectively; moreover, it can handle large
graphs that exceed the capacity of GraphChi and XStream. (2)
Under BSP, it requires only a fraction of supersteps (<29%) and
disk read traffic (<53.3%) of GridGraph for SSSP and WCC. (3) It
improves the CPU utilization of GridGraph, the best-performing
baseline, by up to 41.4%. (4) It scales well with graphs and the num-
ber of CPU cores. It runs all the algorithms on hyperlink12 of
155GB within 32 minutes, while no baseline finishes in 1.4 hours.
(5)MiniGraph incurs less degradation when switching from SSD to
HDD. (6) Its shortcut optimization effectively reduces I/O cost, es-
pecially on dense graphs. (7) Its two-level execution model balances
inter-subgraph and intra-subgraph parallelism. (8) MiniGraph
works better than Gluon with 12 machines on Sim, and saves the
monetary cost of multi-machine systems from 3.0× to 13.9×.

7 RELATEDWORK
We categorize the related work as follows.
Multi-machine systems. A number of multi-machine systems have
been developed, to support big graph analytics by scaling out, e.g.,
[3, 21, 27, 33, 35, 52, 56, 69, 72, 76, 82, 82]. Such systems adopt a
shared-nothing architecture: they partition the input graph, and
distribute the fragments to workers; all workers process their local
fragments in-memory in parallel, and communicate with each other
via message passing. Most of these systems adopt the VC model,
except that GRAPE [27] proposes and supports GC. GraphScope [4,
24] extends GRAPE and can operate with either GC or VC.

In contrast to scaling out with multiple machines, (1)MiniGraph
uses a single machine and explores multi-core parallelism. It aims
to provide small businesses with a capacity of big graph analytics
under limited resources. (2) It adopts a shared-memory architec-
ture and employs the secondary storage as the memory extension.
These introduce new challenges, i.e., the memory constraint and I/O
cost. (3) It develops (a) a pipelined architecture to mitigate I/O cost
and improve CPU utilization, and (b) an efficient synchronization
scheme among workers by using a shared data structure. (4) Extend-
ing GC from multi-machine to multi-core,MiniGraph proposes a
hybrid parallel model. It integrates VC andGC in a unified interface
to enrich inter-subgraph GC parallelism with intra-subgraph VC
parallelism, as opposed to GraphScope, which supports VC and GC
as two separate sets of programming interfaces. (5) It develops a
two-level execution model to support its intra- and inter-subgraph
parallelism. Under the memory constraint of a single machine, this
better utilizes the multi-core resources. Moreover, it introduces an
efficient method for a new (intractable) resource scheduling prob-
lem. (6) MiniGraph explores new optimization methods to skip
computation rounds, and hence reduce unnecessary CPU and I/O.
Single-machine in-memory systems. When graphs are small enough
to fit into the memory of a single machine, in-memory systems [50,
57, 63, 78, 80] aim to conduct computations with high performance.
Such systems focus on optimization techniques onmemory-resident
graphs, e.g., efficient task parallelization [57, 63, 80] and improved
data locality [78]. Ligra [63] introduces a variant of VC model that
allows user-specified parallelization of operations. Polymer [78]
is designed for a NUMA architecture, where the memory access
latency of a processor is not uniform across the address space.

In contrast,MiniGraph targets large graphs that exceed themem-

ory capacity of a single machine. It performs iterative out-of-core
computation, by actively swapping graph data between the memory
and the disk. It deals with inevitable and possibly prohibitive I/O
costs, a challenge that is not encountered by in-memory systems.
Single-machine out-of-core systems. Closer to this work are out-of-
core systems [11, 32, 45, 51, 62, 71, 75, 83]. Most of the systems adopt
VC and BSP. The techniques have mostly focused on reducing I/O,
the major performance bottleneck. XStream [62] proposes stream
reading of edges to maximize sequential disk accesses. GraphChi
[45] divides the input data into small shards, each having a disjoint
set of independent edges; it employs Parallel Sliding Windows such
that shards in the window are allowed inmemory, while those being
pushed out are written onto the disk. Vora et al. [71] propose online
adjustment of sharding, which avoids loading unneeded edges at
the price of extra computation. GridGraph [83] improves the local-
ity of edge sharding via 2-level partitioning based on source and
destination IDs, and enables selective scheduling of data. Clip [11]
allows asynchronous and repetitive processing of an in-memory
shard; however, it must be explicitly invoked by users in their VC
code, which might be error-prone. With extra hardware, Gill et al.
[32] use persistent memory sticks as memory extension, which have
higher throughput than SSDs (Intel has discontinued the Optane-
only SSDs for the consumer market [64]). Mosaic [51] employs an
Intel Xeon Phi coprocessor to accelerate CPU computations.

In contrast,MiniGraph (1) proposes a subgraph-based pipelined
architecture to “cancel” I/O costs and promote sequential accesses
to disks, to exploit the I/O bandwidth; (2) it supports both GC to
simplify parallel programming and speed up beyond-neighborhood
computation, and VC to parallelize edge/vertex operations in each
subgraph; (3) it proposes a two-level execution model to balance
inter-subgraph and intra-subgraph parallelism; and (4) it develops
new optimization strategies to reduce I/O. (5) As opposed to [32, 51],
it requires no dedicated hardware for storage or computation; it
assumes an off-the-shelf machine that can be easily acquired.
Polyglot systems. Polyglot systems [18, 20, 22, 40, 41, 49, 65, 67, 81]
take graphs as edge relation views, and cast graph queries into SQL,
which requires large memory for intermediate data. In contrast,
MiniGraph is a native graph system. It uses a single machine with
limited memory, which is often insufficient for polyglot systems.

8 CONCLUSION
The novelty ofMiniGraph consists of (1) the first single-machine
system that (a) extends GC from multiple machines to multiple
cores, and (b) enriches inter-subgraph parallelism (GC) with intra-
subgraph parallelism (VC) under a hybrid parallel model; (2) a
pipelined architecture to overlap I/O and CPU operations; (3) a two-
level execution model to schedule and balance VC and GC; (4) a
unique optimization scheme to further reduce I/O. Our experimental
study has verified that with a single machine,MiniGraph performs
better than some 12-machine parallel systems.

One topic for future work is to extend the architecture of
MiniGraph by incorporating GPU and FPGA. We have only con-
sidered CPU as a “lowest common denominator” of single-machine
systems. When GPU and FGPA are available, we need to revise our
workload assignment and graph partitioning strategies. Another
topic is to study the optimal graph partitions for a given algorithm.
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A CASE STUDIES
Example 4 has shown how PIE+ parallelizesWCC. Below we show
how to program with PIE+ for problems that fit VC, GC or both.

A.1 PageRank
We first show how to program with PIE+ for PageRank, a problem
defined in VC. The PIE+ programs are similar to its PIE counter-
parts [28], and hence we emphasize the use of EMap and VMap.

As remarked earlier, EMap and VMap support full-fledged VC
programming (see [63]). This makes it possible for PIE+ to program
an arbitrary VC algorithm, by simply recasting it into EMap and
VMap. Consider PageRank (PR [17]), a typical VC program.

PR takes as input a directed graph 𝐺 = (𝑉 , 𝐸) (e.g., hyperlinks
amongWeb pages) and a threshold 𝜖 , and outputs the ranking scores
of all vertices in 𝐺 . For each vertex 𝑣 in 𝑉 , its ranking score is:

𝑣 .rank = 𝑑 · Σ{𝑢 | ⟨𝑢,𝑣⟩∈𝐸}
𝑢.rank

𝑢.degree+
+ (1 − 𝑑), (4)

where 𝑑 is a user-defined damping factor and𝑢.degree+ denotes the
out-degree of 𝑢. This update function is applied iteratively to refine
the ranking scores, until the Euclidean distance between the ranks
in two consecutive iterations is below the predefined threshold 𝜖 .

As shown in Algorithm 5, we simply implement Equation 4 with
EMap and VMap, and embed them in PEval and IncEval.

PEval and IncEval. For each vertex 𝑣 in 𝑉𝑖 of subgraph 𝐹𝑖 , PEval
(1) declares its status variable 𝑣 .sink, initialized as 0 (Line 7); (2)
initializes 𝑣 .rank with a random float in (0, 1) by invoking rand()
with VMap (Line 1); (3) propagates 𝑣 .rank to each out-neighbor
𝑢, accumulating the scores in 𝑢.sink; and (4) updates 𝑣 .rank by
Equation 4 based on the score accumulate in 𝑣 .sink (Line 2).

Steps (3) and (4) are parallelized via EMap and VMap, with up-
date functions Propagate and UpdateRank, respectively. EMap ex-
ecutes Propagate for all vertices in parallel. Each call to Propagate
performs rank propagation along an edge ⟨𝑣,𝑢⟩. It sends the source
rank 𝑣 .rank to𝑢 and calculates accumulated ranking scores in𝑢.sink
by Equation 4 (Line 7). Then VMap runs UpdateRank in parallel,
to update the score of every vertex 𝑣 based on 𝑣 .sink (Line 9).

IncEval is similar to PEval except that it (1) starts with border
nodes updated by messages (Line 3), and (2) resets 𝑣 .sink for each
𝑣 in 𝑉𝑖 to 0 (Line 4). Both steps are parallelized with VMap.

Assemble is triggered as soon as the changes between two consec-
utive IncEval iterations are below threshold 𝜖 . It simply collects the
ranking scores of all vertices, and returns the scores as output.

Remarks. Algorithm 5 is a representative example for converting
a VC algorithm into a PIE+ program. It shows how to parallelize
vertex-centric operations with EMap and VMap. In general, given
a VC algorithm such as a GAS program of PowerGraph [33], we
may convert it into a PIE+ program as follows: (1) declare an inter-
mediate hashmap Π for caching incoming messages at all vertices;
(2) recast Scatter with VMap to generate the outgoing message for
each vertex; (3) recast Gather with EMap to perform the message
passing via adjacent edges of each vertex, and caching/aggregating
them in the corresponding receiver entries of Π; (4) recast Apply
with VMap to update each vertex based on its own status and its
aggregated messages in Π; (5) embed the implementation above in
PEval and IncEval; and (6) specify Assemble based on the output.

Algorithm 5: PR under PIE+.
Input: subgraph 𝐹𝑖 = (𝑉𝑖 , 𝐸𝑖 ) , a threshold 𝜖 .
Output: the rank of every 𝑣 in𝑉𝑖 .

/* declare status variable: 𝑣.sink = 0 for each 𝑣 ∈ 𝑉𝑖 ; */
Function PEval (𝐹𝑖 ):
1 VMap (𝑉𝑖 , function (𝑣) { 𝑣.rank := rand( ) ; return ∅; });
2 EMap (𝑉𝑖 , Propagate); VMap (𝑉𝑖 , UpdateRank); return ∅;
Function IncEval (𝐹𝑖 ,𝑀𝑖 ):
3 VMap (𝑀𝑖 , function (𝑚) { 𝑣.rank :=𝑚.rank; return ∅; });
4 VMap (𝑉𝑖 , function (𝑣) { 𝑣.sink = 0; return ∅; });
5 EMap (𝑉𝑖 , Propagate); VMap (𝑉𝑖 , UpdateRank); return ∅;
6 Procedure Propagate (𝑢, 𝑣):
7 𝑣.sink := 𝑣.sink +𝑢.rank/𝑢.degree+; return ∅;

8 Procedure UpdateRank (𝑣):
9 𝑣.rank := 𝑑 · 𝑣.sink + (1 − 𝑑 ) ; return ∅;

A.2 Graph Simulation
We next study graph simulation, an algorithm that is easy to write
under graph-centric GC model, but is nontrivial under VC.

Consider a graph pattern 𝑄 = (𝑉𝑄 , 𝐸𝑄 , 𝐿𝑄 ), which is defined
just like graphs (Section 2). Given a pattern 𝑄 = (𝑉𝑄 , 𝐸𝑄 , 𝐿𝑄 ), a
match of 𝑄 in graph 𝐺 = (𝑉 , 𝐸, 𝐿) via graph simulation, denoted
by Sim, is a binary relation 𝑅 ⊆ 𝑉𝑄 ×𝑉 such that (1) for each pair
(𝑢, 𝑣) ∈ 𝑅, 𝐿𝑄 (𝑢) = 𝐿(𝑣); and (2) for each pattern vertex 𝑢 ∈ 𝑉𝑄 ,
there exists a vertex 𝑣 ∈ 𝑉 such that (a) (𝑢, 𝑣) ∈ 𝑅, and (b) for
each pattern edge ⟨𝑢,𝑢′⟩ ∈ 𝐸𝑄 , there is an edge ⟨𝑣, 𝑣 ′⟩ ∈ 𝐸 such
that (𝑢′, 𝑣 ′) ∈ 𝑅. If 𝐺 matches 𝑄 , there exists a unique maximum
relation [36], denoted as 𝑄 (𝐺); otherwise, 𝑄 (𝐺) is an empty set.
It is in quadratic time to compute 𝑄 (𝐺) [36].
Outline. We show how PIE+ implements the algorithm of [36] for
Sim, denoted asAsim. Given a pattern𝑄 and a graph𝐺 ,Asim com-
putes the unique maximum relation𝑄 (𝐺). It maintains a set sim(𝑢)
for each pattern vertex 𝑢 ∈ 𝑉𝑄 , initialized as the set of all vertices
𝑣 in𝐺 that bear the same label as 𝐿𝑄 (𝑢); it then refines sim(𝑢) iter-
atively by removing invalid candidates until a fixpoint is reached.

Under PIE+, Asim is a minor adaptation from the PIE program
of [28]. It works as follows on every subgraph 𝐹𝑖 . (1) It declares
a Boolean variable 𝑥 (𝑢, 𝑣) for each pattern vertex 𝑢 in 𝑄 and each
vertex 𝑣 in 𝐹𝑖 ; flag 𝑥 (𝑢, 𝑣) is set true if 𝑣 is a potential match of 𝑢;
it is reset to false when 𝑣 is removed from sim(𝑢). (2) PEval refines
sim(𝑢) for all 𝑢 ∈ 𝑉𝑄 and computes 𝑄 (𝐹𝑖 ) following [36]. At the
end of PEval, each worker aggregates 𝑥 (𝑢, 𝑣) into MessageStore
by taking a conjunction in 𝑣 ’s corresponding entry. (3) IncEval is
the incremental simulation algorithm of [26], which treats message
updates as edge deletions. It works on each status variable in
the messages, propagates the changes to the affected area, and
refines sim(𝑢). At the end of each IncEval process, changed flags
𝑥 (𝑢, 𝑣) of border nodes 𝑣 are aggregated by𝑊𝑝 just like in PEval.
(4) Assemble is triggered when no more messages are exchanged;
it takes a union of 𝑄 (𝐹𝑖 ) for all 𝑖 and returns the union as 𝑄 (𝐺).
Use of EMap and VMap. Algorithm Asim parallelizes edge/vertex-
level operations with EMap and VMap. (1) During PEval initial-
ization, VMap is used to assign the initial match set sim(𝑢) for
all 𝑢 ∈ 𝑉𝑄 in parallel. (2) Later in PEval, VMap parallelizes refine-
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ment of sim(𝑢) for each 𝑢, during which EMap is used to check
invalid matches of neighbors of 𝑢 in parallel. (3) In IncEval, VMap
parallelizes incremental processing of each “edge deletion”.

Remarks. PR is a representative example for converting a GC algo-
rithm into a PIE+ program. In general, the conversion is as follows:
(1) start from its PIE program, which typically parallelizes an ef-
ficient sequential algorithm; (2) identify independent operations,
e.g., loops that iterate on an edge/vertex set, as commonly found in
graph algorithms; and (3) replace these loops with an EMap or a
VMap, passing in an update function that is functionally equivalent.

A.3 Single-Source Shortest Path
We next present a PIE+ algorithm for single-source shorted path
(SSSP), for which algorithms are known under both GC and VC.

Consider a directed graph 𝐺 = (𝑉 , 𝐸, 𝐿), where edge label 𝐿(𝑒)
is a positive number for 𝑒 ∈ 𝐸. The length of a path ⟨𝑢0, 𝑢1, . . . , 𝑢𝑘 ⟩
in𝐺 is Σ𝑘−1

𝑖=0 𝐿(⟨𝑢𝑖 , 𝑢𝑖+1⟩). For a pair (𝑠, 𝑑) of vertices in𝑉 , dist(𝑠, 𝑑)
denotes the shortest distance from 𝑠 to 𝑑 . Given such a graph𝐺 and
a source 𝑠 ∈ 𝑉 , SSSP is to compute dist(𝑠, 𝑣) for all 𝑣 ∈ 𝑉 .

Outline. For subgraph 𝐹𝑖 , we declare a variable 𝑥 (𝑣) for all vertices
𝑣 in 𝐹𝑖 , denoting dist(𝑠, 𝑣). These status variable are initialized as
∞ except 𝑥 (𝑠) = 0. PEval implements the Dijkstra’s algorithm [30],
and computes 𝑥 (𝑣) for all 𝑣 along paths within 𝐹𝑖 . MessageStore
aggregates𝑥 (𝑣) of border nodes by takingmin as aggregate function
𝑓aggr. Then, IncEval follows the incremental SSSP algorithm in [60]
upon receiving the updated 𝑥 (𝑣) values as messages. It refines local
𝑥 (𝑣) values iteratively, by recalculating shortest paths from border
nodes 𝑣 with updated 𝑥 (𝑣). When no further updates can be made
to any 𝑥 (𝑣), Assemble aggregates dist(𝑠, 𝑣) for all 𝑣 in 𝑉 .

Use of EMap. In both PEval and IncEval, a vertex 𝑣 is marked active
if its 𝑥 (𝑣) is updated. All active vertices are cached in a min heap,
sorted by 𝑥 (𝑣). The algorithm iteratively (1) removes the minimum
element 𝑣 from the heap and marks it inactive; and (2) checks every
neighbor 𝑢 of 𝑣 , and updates 𝑥 (𝑢) with a smaller value if it exists.
The PIE+ program employs EMap to parallelize accesses to 𝑣 ’s
neighbors, similar to BFSes inWCC (see Line 6 of Algorithm 3).

A.4 Breadth-First Search
We then program for breadth-first search (BFS), another problem
for which we have known algorithms in both GC and GC.

Given a directed graph𝐺 = (𝑉 , 𝐸) and a root vertex 𝑣0 in𝑉 , BFS
is an ordered graph traversal that (1) starts from root 𝑣0, and (2)
visits all vertices at the current depth level before moving on to the
vertices at the next level. The depth of vertex 𝑣 is defined by the
length of the shortest path that starts from 𝑣0 and finishes at 𝑣 .

BFS is different from the procedure called inWCC (Algorithm 4,
Section 4).WCC executes breadth-first traversal within each sub-
graphs; traversals on different subgraphs are independently because
the order of visiting vertices does not really matter. BFS, however,
requires a correctly ordered traversal across the entire graph.

Outline. For subgraph 𝐹𝑖 , we declare an integer status variable 𝑥 (𝑣)
for all 𝑣 in 𝐹𝑖 . Variable 𝑥 (𝑣) records the traversal depth of 𝑣 ; its
initial value is -1, indicating that 𝑣 has not been visited before. We
use such variables to sort vertices in BFS and avoid repetitive visits.
The status variable for root 𝑥 (𝑣0) is initialized as 0.

For each subgraph 𝐹𝑖 in which 𝑣0 resides (including all mirrors
if 𝐺 is partitioned via, e.g., vertex-cut [5]), PEval traverses 𝐹𝑖 via a
recursive BFS procedure. Starting from root 𝑣0, it finds each direct
neighbors 𝑢 of 𝑣0 and set x(u) = 1. Then, after visiting depth-𝑘 ver-
tices, it visits all unvisited direct neighbors of each depth-𝑘 vertex,
and sets their status variables to 𝑘 + 1. If a border node 𝑢 is vis-
ited, it sends the traversal depth of 𝑢 into its corresponding entry
MessageStore[𝑢], taking the minimum as 𝑓aggr.

Then IncEval pulls messages fromMessageStore and visits their
neighbors recursively as in PEval but starts from border nodes with
changed status. It concludes as soon asMessageStore is empty, and
Assemble sorts visited vertices by their traversal depth.

Use of EMap. Like inWCC, we use EMap to parallelize visits to the
neighboring vertices in both PEval and IncEval.

A.5 RandomWalk
Finally, we provide a PIE+ program for graph random walk (RW),
for which algorithms are known under both GC and VC.

RW is an important building block for many randomized graph
processing (e.g., graph sampling [38]) and learning algorithms.
Given a directed graph 𝐺 = (𝑉 , 𝐸) and 𝑛 source vertices in 𝑉 ,
RW initiates by issuing 𝑛 walkers at these sources. A walker walks
in steps among vertices, while each step randomly selects one edge
out of its current vertex. The walker keeps walking until a certain
criteria is met, e.g., it has taken an upper bound 𝑑 of steps.

Outline. For subgraph 𝐹𝑖 , PEval moves each walker𝑤 placed on 𝐹𝑖
for a few steps and counts the total steps that𝑤 has taken, denoted
by 𝑐 (𝑤). When𝑤 is at vertex 𝑢, it terminates walk for𝑤 if either
(1) 𝑢 has no outgoing edge, or (2) 𝑐 (𝑤) ≥ 𝑑 . Otherwise, it takes a
step by uniformly sampling one edge ⟨𝑢, 𝑣⟩ going out of 𝑢, placing
𝑤 on 𝑣 , and incrementing 𝑐 (𝑤). If 𝑣 is a border vertex, it store 𝑐 (𝑤)
in the entry of 𝑣 in MessageStore. IncEval for subgraph 𝐹 𝑗 pulls
from MessageStore and replaces walkers on their corresponding
vertices. It then follows the same lines as PEval. Finally, Assemble
collects and returns the paths taken by all 𝑛 walkers.

Use of VMap. RW employs VMap to parallelize operations of differ-
ent walkers, which move independently and are fully parallelizable.

B IMPLEMENTATION DETAILS
MiniGraph is implemented in 12k+ lines of C++ code, based on
the pipelined architecture of Figure 2. A thread is dedicated to
Loader, which responds to read requests and loads subgraphs into
memory, one at a time; similarly for Discharger. Both components
perform synchronous I/O, and consume few CPU cycles. Evaluator
maintains a thread pool for active workers, of size𝑚 on an𝑚-core
machine. Scheduler allocates threads to available cores. Moreover,
Evaluator can move a thread from an active worker to another,
without interrupting their executions and with negligible cost in
light of the shared memory. The dynamic thread reallocation is easy
since EMap and VMap readily decompose computation on each
subgraph into independent calls to (low-cost) update functions 𝑓𝐸
and 𝑓𝑉 .MiniGraph employsMessageStore as the central exchange
point for messages. To make a low memory footprint and improve
concurrency, it is implemented as an array; it incurs a lower space
and time cost than a key-value store (e.g., a hashmap).
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MessageStore. The execution model ofMiniGraph is essentially
subgraph-based, as opposed to the VC model. The synchronization
among computation tasks is conducted via message passing. A
typical message takes the form of a simple key-value pair, in which
the key identifies a vertex and the value encodes its updates.

In MiniGraph, MessageStore works as the central exchange
point for messages, by caching and managing all pending mes-
sages. Considering the large volume of messages and the high-
concurrency accesses, the rule of thumb of its design is to lower the
memory footprint and to improve the access efficiency.

One might want to implementMessageStore as a list of message
buckets, which are referred to as receiver-buckets. By maintaining a
bucket—which is implemented as a hashmap for quick lookups—for
each subgraph, it groups messages destined for the same receiver.
However, it (1) introduces value replication among buckets, and (2)
incurs several times of space overhead to avoid key collisions, even
with a memory-efficient cuckoo hashmap [58].

In light of this, for MiniGraph, we take a radically different
approach. To make predictable use of memory while retaining a
low access cost, we implement MessageStore as a single fixed-size
message array, from which every task pulls its desired messages via
random accesses. Since the input graph uses consecutive natural
numbers to identify the vertices,MessageStore can eliminate key
storage and use a large array to index the values. More specifically,
MessageStore initializes a (segmented) array whose size is the same
as the number of vertices of the input graph. (1) To cache message
(id,msg), we put msg into MessageStore[id]. If a message already
exists, we aggregate it with update by applying aggregateMessage
defined in PEval. (2) To access a message for border vertex id, a
worker can read directly fromMessageStore[id].

One possible concern is that the pre-allocated array itself may
be too much of an overhead. We argue that, for most real-life
graphs, border vertices count for a significant proportion; therefore,
MessageStore can make an efficient use of most cells. As compared
to receiver-buckets, it benefits more from the elimination of key
storage, value replication, and memory overhead of a hashmap.

In our experiments with real-life graphs, MessageStore takes
only a small portion in memory. For example, under various work-
loads over web-sk (32GB in size), its peak memory consumption is
220MB, 0.3% of the 64GB memory of our workstation testbed.

C PROOF OF THEOREM 1
We study the decision problem of the scheduling problem, which is
denoted by DSP and stated as follows:
◦ Input: Subgraphs 𝐹0, 𝐹1, . . . , 𝐹𝑛−1, the cost function 𝐶A (Equa-

tion 2), an𝑚-core machine whose memory capacity is 𝜂 and disk
read bandwidth is 𝛾 , and a deadline 𝐵.

◦ Question: Does there exist a valid schedule S whose makespan
is bounded by 𝐵, i.e., max𝑖∈[0,𝑛) {𝑡𝑖 +𝐶A (𝐹𝑖 , 𝑝𝑖 )} ≤ 𝐵?

Proof of theNP-completeness.We verify the upper bound ofDSP
by developing an NP algorithm. The algorithm works as follows:
(1) first guess a schedule S = (𝑝, 𝑡); and (2) then check whether the
makespan max𝑖∈[0,𝑛) {𝑡𝑖 +𝐶A (𝐹𝑖 , 𝑝𝑖 )} ≤ 𝐵; if so, return true. The
algorithm is clearly in NP since verification in step (2) can be done
in polynomial time (PTIME); hence so is DSP.

We verify the lower bound ofDSP by reduction from PARTITION

problem, which is known to be NP-complete (cf. [31]). PARTITION
is to decide, given a finite set 𝐴 of positive integers, whether there
exists a subset𝐴′ ⊆ 𝐴, such that𝐴′ and its complement𝐴′ = 𝐴 \𝐴′

have an equal sum, i.e.,
∑
𝑖∈𝐴′ 𝑎𝑖 =

∑
𝑗∈𝐴′ 𝑏 𝑗 .

Given a set of 𝑛 positive integers 𝐴 = {𝑎0, 𝑎1, . . . , 𝑎𝑛−1}, we
construct a schedule S for a set of subgraphs 𝐹0, 𝐹1, . . . , 𝐹𝑛−1,
a positive integer 𝑚, two positive numbers 𝜂 and 𝛾 , a deadline
𝐵, and a cost function 𝐶A to ensure the following property: 𝐴
can be partitioned into 𝐴′ and 𝐴′ of equal sum if and only if
max𝑖∈[0,𝑛) {𝑡𝑖 + 𝐶A (𝐹𝑖 , 𝑝𝑖 )} ≤ 𝐵. Without loss of generality, we
assume 𝐴′ = {𝑎0, 𝑎1, . . . , 𝑎𝑘−1} and 𝐴′ = {𝑎𝑘 , 𝑎𝑘+1, . . . , 𝑎𝑛−1}.

The construction details are presented as follows.

(1) The cost function 𝐶A is defined such that for all 𝑖 ∈ [0, 𝑛),
𝐶A (𝐹𝑖 , 1) = 𝐶A (𝐹𝑖 , 2) = 𝑎𝑖 . More specifically, (a) ℎseqA (𝑥𝑖 (𝑣)) =

0.25 and ℎ
para
A (𝑥𝑖 (𝑣)) = 0.25 are constants for any vertex 𝑣 . (b)

Fragment 𝐹𝑖 is constructed as a collection of 𝑎𝑖 connected vertex
pairs. That is, 𝐹𝑖 has 𝑎𝑖 pairs of vertices. For an undirected graph,
there exists an edge between each pair of vertices; for a direct
graph, each vertex in the pair has an outgoing edge to the other. As
a result, the average degree 𝑑𝑖 of 𝐹𝑖 is 1. One can easily verify from
Equation 2 that 𝐶A (𝐹𝑖 , 1) = 𝐶A (𝐹𝑖 , 2) = 𝑎𝑖 for all 𝑖 ∈ [0, 𝑛).
(2) We set 𝑚 = 2 and 𝜂 = max |𝐾 |=min{4,𝑛}

∑
𝐾⊆[0,𝑛) 𝑠 (𝐹𝑖 ). Intu-

itively, the machine has two cores (e.g., Core 0 and Core 1), and the
four largest fragments can fit into the memory at the same time.
We also set 𝛾 = ∞, i.e., loading time for a fragment is negligible.

(3) Schedule S assigns 𝑝𝑖 = 1 for all 𝑖 ∈ [0, 𝑛). It sets the start time
𝑡0 = 𝑡𝑘 = 0, and 𝑡𝑖 = 𝑡𝑖−1 + 𝑎𝑖−1 for all 0 < 𝑖 < 𝑘 and 𝑘 < 𝑖 < 𝑛.
In other words, fragments are partitioned into two groups 𝐺0 =

{𝐹0, 𝐹1, . . . 𝐹𝑘−1} and 𝐺1 = {𝐹𝑘 , 𝐹𝑘+1, . . . 𝐹𝑛−1}. Each fragment in
𝐺𝛼 is executed one after another on Core 𝛼 , for 𝛼 ∈ {0, 1}.
(4) Finally, we set 𝐵 = 1

2
∑
𝑎∈𝐴 𝑎. Note that we assume w.l.o.g. that

𝐵 is a positive integer and thus
∑
𝑎∈𝐴 𝑎 = 2𝐵.

We next verify the correctness of our reduction.

(⇒) Suppose that 𝐴 can be partitioned into 𝐴′ and 𝐴′ of equal sum.
We have

∑
𝑎∈𝐴′ 𝑎 =

∑
𝑎∈𝐴′ 𝑎 = 𝐵. The makespan of schedule S is

max
𝑖∈[0,𝑛)

{𝑡𝑖 +𝐶A (𝐹𝑖 , 𝑝𝑖 )} = max{𝑡𝑘−1 + 𝑎𝑘−1, 𝑡𝑛−1 + 𝑎𝑛−1}

= max{Σ𝑘−1
𝑖=0 𝑎𝑖 , Σ

𝑛−1
𝑗=𝑘

𝑎 𝑗 }
= max{𝐵, 𝐵} = 𝐵.

(⇐) Suppose that the makespan of schedule S can meet dead-
line 𝐵, i.e., max𝑖∈[0,𝑛) {𝑡𝑖 + 𝐶A (𝐹𝑖 , 𝑝𝑖 )} ≤ 𝐵. We have that
max{Σ𝑘−1

𝑖=0 𝑎𝑖 , Σ
𝑛−1
𝑗=𝑘

𝑎 𝑗 } ≤ 𝐵. As a consequence, one can deduce:

Σ𝑘−1
𝑖=0 𝑎𝑖 ≤ 𝐵, (5)

Σ𝑛−1
𝑗=𝑘

𝑎 𝑗 ≤ 𝐵. (6)

Here we construct 𝐴′ = {𝑎0, 𝑎1, . . . , 𝑎𝑘−1} and its complement
𝐴′ = {𝑎𝑘 , 𝑎𝑘+1, . . . , 𝑎𝑛−1}. From Equations 5 and 6, we have that
Σ𝑎∈𝐴′𝑎 ≤ 𝐵 and Σ𝑏∈𝐴′𝑏 ≤ 𝐵, respectively. Provided that 𝐵 is
defined such that

∑
𝑎∈𝐴 𝑎 = 2𝐵, we have Σ𝑎∈𝐴′𝑎 = Σ𝑏∈𝐴′𝑏 = 𝐵. In

other words, 𝐴′ and its complement 𝐴′ have an equal sum 𝐵.
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Figure 7: PR: 50% memory budget.

Name Type |𝑉 | |𝐸 | MaxDegree Raw Data

roadNetCA [1] road network 2M 2.7M 23 83MB
skitter [46] network topology 1.6M 11M 35455 142MB

twitter [9, 44] social network 41.6M 1.5B 3M 25GB

Table 5: Additional graph datasets.

D ADDITIONAL EXPERIMENTAL RESULTS
Below we report additional experimental results.

D.1 Additional Results for PageRank
This section shows some additional results for PR.

Figure 7 shows the performance ofMiniGraph and its variants
for PR, on friendster and web-sk. We find the following.

(1) Compared toMiniGraphNoShort, on averageMiniGraph is 11.2%
and 35.9% faster over the two graphs, respectively. Moreover, short-
cuts are much more effective on web-sk than on friendster. The
reasons include the following: (a) web-sk has more connected com-
ponents. Its largest connected component has 70.85% vertices, and
13.63% vertices are dangling nodes that are not connected to any
other vertex. Under PR, some parts of the graph may already con-
verge while other parts still require iterative computations. This
improves the opportunity for shortcut (A) (Section 5.2). (b) On the
contrary, friendster has a single large connected component only.
As a result, PR actively updates the ranking cores of all vertices in
every superstep, which effectively invalidates both Shortcuts (A)
and (C). Out of the three shortcuts listed in Section 5.2, Shortcut
(B) is the only one that can be actively exploited.

(2)MiniGraph is significantly faster thanMiniGraphSeq. It is 156.6%
and 455.9% faster over friendster and web-sk, respectively. This
is because of the VC nature of PR. It programs independent and
massively parallelizable operations on individual vertices and edges;
therefore, it would under-utilize the multi-core parallelism if intra-
subgraph parallelism cannot be exploited on a single machine.

D.2 Additional Graph Datasets

Smaller graphs. We experimented with three smaller real-life
graphs, including roadNetCA, skitter, and twitter, They are of
different types, and Table 5 lists their details. Because roadNetCA
and skitter are small in size, we ran the experiments with the
entire graph in memory without imposing a memory budget. Over
twitter, the tests were conducted under 50% memory budget.

Table 6 shows the performance ofMiniGraph, GraphChi, Grid-
Graph and XStream. For out-of-core workloads (i.e.,twitter),

MiniGraph beats all baseline systems. On average, it beats Grid-
Graph,GraphChi and Xtream by 1.4×, 4.2× and 12.4×, respectively.

MiniGraph underperforms prior systems in two cases over small
graphs that can fit entirely into the memory. On skitter, e.g.,
GridGraph takes 0.67× of the time ofMiniGraph. This is because
MiniGraph takes longer to initialize auxiliary data structures when
it starts. The margin is small (a 0.18s difference); for larger graphs,
it is amortized by the I/O and computational costs.

Additional results over clueWeb. Table 7 shows runtime statistics
for some applications over clueWeb. The raw graph is 137GB large;
it way exceed the physical memory capacity (47% of clueWeb) of
our workstation testbed. That said, we no longer use cgroups to
enforce a “software” memory budget in this experiment.

As shown in Table 4, MiniGraph is on average 4.59×, 4.25× and
2.1× faster than GridGraph for SSSP, WCC and PR, respectively.
Table 7 further reports the number of supersteps, the volume of
disk read traffic, I/O reduction from shortcuts, the average CPU
utilization, the correlation coefficient 𝑟 between real-time I/O and
CPU usage, and the CPU cache hit rate. MiniGraph does better in
all the aspects. The results are consistent for other algorithms.

The experimental results are consistent with applications over
web-sk, another Web graph evaluated in Section 6. On average,
(1) for SSSP, and WCC, MiniGraph reduces the BSP supersteps
by 73.5%, and 91.9%, respectively. (2) Compared to GridGraph,
MiniGraph induces 42.2%, 56.89%, and 46% less disk read traffic,
in which shortcut optimizations contribute 5.3%, 15.3% and 12%
for SSSP,WCC, and PR, respectively. (3) Compared to GridGraph,
MiniGraph improves CPU utilization by 14.9%–45.2%.

D.3 Scalability
Under 50% memory budget, we next present additional experimen-
tal results on the scalability ofMiniGraph.

Varying |𝐺 | for PageRank. As shown in Figure 8a when vary-
ing the scaling factor 𝛿 from 0.4 to 1.0 and 𝐺 is clueWeb, (1)
MiniGraph scales well with |𝐺 |. It takes 1.7× longer, while it is
1.8× for GridGraph. (2) MiniGraph also scales better than its vari-
ants. MiniGraphNoShort increases 4.6× when 𝛿 varies from 0.4 to
1.0. These further verify the effectiveness of our optimization strate-
gies. (3) When |𝐺 | grows 2.5×, MiniGraph induces only 2.2× I/O
traffic, a large part due to the shortcut optimizations.

Varying𝑚 for WCC. Varying the number𝑚 of cores from 4 to
20, we ran WCC over friendster and web-sk. As shown in Fig-
ure 8b, (1) MiniGraph scales sub-linearly with𝑚 on both graphs.
When varying𝑚 from 4 to 20, its performance improves 2.1× and
2.3× over friendster and web-sk, respectively. (2) It scales better
than GridGraph, which does not improve much (up to +2.1% over
friendster and +29.7% over web-sk) when𝑚 varies from 4 to 20.
This is because GridGraph is always I/O-bound, which echoes our
findings in Figure 6b. (3) It also scales better than MiniGraphSeq,
whose performance barely improves when𝑚 ≤ 8 due to the lack
of intra-subgraph parallelism. This further justifies the need for a
hybrid parallel model that supports both GC and VC.

Varying 𝑝𝑖 for PageRank. Besides testing the impact of varying
𝑝𝑖 over clueWeb (see Figure 6h), Figure 8c reports its impact on PR
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Data Memory
Budget

#Partitions
(PR/Others)

SSSP WCC PR

MiniGraph GraphChi GridGraph XStream MiniGraph GraphChi GridGraph XStream MiniGraph GraphChi GridGraph XStream

roadNetCA 100% 1/1 8.66 22.5 (2.6×) 10.55 (1.2×) 2 (0.2×) 2.76 17.2 (6×) 18.22 (6.6×) 2.93 (1.1×) 0.25 0.91 (3.5×) 0.71 (2.7×) 2.34 (2.6×)
skitter 100% 1/1 0.53 41.64 (78.5×) 0.35 (0.67×) 0.69 (1.3×) 0.16 18.43 (115.2×) 0.33 (2.1×) 0.59 (3.9×) 0.27 1.27 (4.7×) 0.82 (3.0×) 0.98 (3.6×)
twitter 50% (12.5GB) 4/10 150.8 802.8(5.3×) 195.4(1.29×) 2365(15.×) 159.5 594.8(3.7×) 186(1.2×) 1983(12.4×) 224.2 782.1(3.5×) 371.3(1.7×) 2183(9.7×)

Table 6: Execution time for SSSP, WCC and PR (in seconds) over more real-life datasets.
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Figure 8: Scalability of MiniGraph.

Metric SSSP WCC PR

MiniGraph GridGraph MiniGraph GridGraph MiniGraph GridGraph

# Supersteps 18 68 16 199 20 20
Disk Read (GB) 2007 3471.4 1843.2 4275.9 1105.92 2048
Shortcut I/O (GB) -184.4 N/A -655.36 N/A -245.8 N/A

Average CPU Utilization 18% 3.1% 19.8% 4.1% 55.3% 10.1%
I/O-Compute Correlation -0.048 -0.222 0.021 -0.093 -0.047 0.029

Cache Hit Rate 53.27% 50.13% 55.38% 53.66% 69.37% 63.28%

Table 7: Runtime statistics for SSSP, WCC and PR over clueWeb.

Cost model 𝐶A Model (a) Model (b)

Normalized loss over 𝑆test 0.16 0.22 0.22
Normalized loss over 𝑆′test 0.40 0.50 0.43

Improvement web-sk (%) 39.0% 27.2% 27.3%
Improvement clueWeb (%) 30.0% 16.5% 17.1%

Table 8: Accuracy and effectiveness of cost model formulations.

over both friendster and web-sk. For each graph partitioning, we
mark its tentative allocation 𝑝𝑖 (Section 5) with colored points. The
results show that for PR, our simple heuristic algorithm for deciding
𝑝𝑖 again selects a near-optimal value for 𝑝𝑖 . It further verifies that
MiniGraph strikes a balance between the two levels of parallelism
and improves the overall multi-core parallelism.

Varying 𝑛 over friendster. In addition to experiments with dif-
ferent partitioning of web-sk (see Figure 6i), we also tested the
impact of 𝑛 over friendster. Varying the number 𝑛 of partitions
from 2 to 64, Figure 8d shows the performance ofWCC and PR.

(1) For VC-based PR, its optimal 𝑛 is also 4 (consistent with results
over web-sk). It suggests that regardless of the graph distribution,
VC algorithms with massively parallelizable operations always
prefer exploiting intra-subgraph parallelism to inter-subgraph par-
allelism in MiniGraph. This is reasonable: a higher inter-subgraph
parallelism often leads to a more fragmented graph, which gen-
erates more messages (updates) across supersteps, inducing more
undesirable computational overheads for message aggregation.

(2) For GC-based WCC, the optimal 𝑛 is 4. The result shows a
pattern similar to the one over web-sk.

D.4 Cost Model Formulation
We also empirically verified (1) the accuracy of the cost model 𝐶A
in estimating the computation costs for a given PIE+ algorithm
A (Equation 2, Section 5.1) and (2) its generalizability to graphs
that are of the same type (e.g., Web graphs) as training graphs. We
also evaluated its overall impact on the system performance once
applied in our resource scheduling strategy.

ForWCC, the graph𝐺 is undirected, partitioned into𝑛 fragments
𝐹1, 𝐹2, . . . , 𝐹𝑛 . Following [25], the metric variables 𝑥𝑖 (𝑣) include

𝑥𝑖 (𝑣) = {𝑑𝐿, 𝑑𝐺 , 𝑟 , 𝐷},
where 𝑑𝐿 (𝑣) (resp. 𝑑𝐺 (𝑣)) denotes the degree of vertex 𝑣 in frag-
ment 𝐹𝑖 (resp. graph 𝐺), 𝑟 (𝑣) denotes the number of mirrors of 𝑣
among all fragments (for, e.g., vertex-cut [5] or hybrid-cut [19]), and
constant metric 𝐷 denotes the average degree of all vertices in 𝐺 .

In addition to 𝐶A , We evaluated two alternative cost models:

Model (a) is a polynomial regression model in the same form of𝐶A
yet taking fewer metric variables. Specifically, it takes a subset

𝑥
(𝑎)
𝑖

(𝑣) = {𝑑𝐿, 𝑟 }
of metric variables in 𝑥𝑖 (𝑣), without considering 𝑣 ’s degree in 𝐺

and the constant metric 𝐷 in the polynomial.

Model (b) is a multi-layer perceptron, whose input layer takes 𝑝𝑖
and all metric variables in 𝑥𝑖 (𝑣) as input. In addition to the input
and the output layer, it has two fully connected hidden layers, and
makes use of ReLU as the activation function.

Below we empirically show that compared to models (a) and (b)
above, the proposed cost model 𝐶A strikes a better balance among
accuracy, generalizability and training cost.

Model accuracy. Once trained for algorithm A, 𝐶A is expected
to (1) make an accurate estimation of the computational cost; and
(2) generalize well when applied to graphs of the same type. Both
properties are inherited from the cost model proposed in [25].

To verify the two properties when A is the PIE+ program for
WCC, we collected 588 (resp. 521) samples from the logs for which
MiniGraph executedWCC over web-sk (resp. clue-web) in 30 runs.
We then randomly selected 470 from the collected samples over
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web-sk, grouping them as the training set 𝑆train and the rest 118
samples as the test set 𝑆test. The samples over clueWeb are grouped
as another test set 𝑆 ′test. Both are of the Web graph type.

The cost models 𝐶A and models (a) and (b) are trained with
𝑆train and tested against both 𝑆test and 𝑆 ′test of two graphs.

Accuracy. Table 8 shows the normalized loss of𝐶A , models (a) and
(b) over test set 𝑆test. Provided that 𝑆𝑣 is collected from the same
graph as the training set (web-sk), 𝐶A results in 57.9% and 61.5%
smaller loss than models (a) and (b), respectively.

While 𝐶A and models (a) have a similar formulation, model (a)
does not work as well as𝐶A , because it removes 𝑑𝐺 and𝐷 from the
metric variables. Intuitively, these two variables are closely related
to the synchronization cost for a vertex by e.g., determining the
number of calls to the aggregation function 𝑓aggr. As explained
in [25], they are important factors for GC algorithms where no
explicit vertex functions are involved. The variables 𝑑𝐺 and 𝐷 can
help estimate the amortized input size of vertex computation.

As a deep model with two hidden layers, model (b) requires more
data to train. With 470 samples from 𝑆train, it incurs overfitting and
inaccurate estimates on 𝑆test. This justifies 𝐶A as a simpler poly-
nomial formulation to strike a better balance between the training
cost and accuracy, especially when the training data is insufficient.

Generalizability to different graphs. Table 8 also presents the nor-
malized loss of the three cost models over test set 𝑆 ′test, which are
sampled from the running logs over a different graph of the same
type (clueWeb, both are Web graphs). Here 𝐶A exhibits the best

loss among the three models under tests; its estimations are 27.2%
and 5.0% more accurate than models (a) and (b), respectively.

It proves that the cost model formulation𝐶A has better general-
izability when applied to graphs of the same type as the training
graphs. The reasons behind are similar: model (a) ignores the effect
of 𝑑𝐺 and 𝐷 , which are some key characteristics for computation
with the GC-basedWCC algorithm; and model (b) overfits 𝑆train.

Impact on the system performance. We next deployed the
trained model 𝐶A and models (a) and (b) as the cost model in
our scheduling strategy. It changes the resource scheduling behav-
ior of MiniGraph. As a naive baseline for comparison, we deploy a
randomized scheduling strategy, which randomly picks a pending
subgraph for processing whenever sufficient memory is available.

We report the average execution time of MiniGraph across 10
runs under different scheduling strategies. As shown in Table 8
over web-sk, models 𝐶A and (b) lead to 39%, 27.2%, and 27.3% im-
provement over the naive baseline, respectively. On different graph
clueWeb, the improvement is 30.0%, 16.5% and 17.1%, respectively.

These justify the use of a cost estimation in resource scheduling.
Moreover, in all cases, 𝐶A leads to the best system performance.
Recall that our scheduling strategy depends on an accurate cost
estimate to (1) order the subgraphs in the pipelined processing; and
(2) allocate idle threads at runtime. Model𝐶A allowsMiniGraph to
have a better chance in mitigating the stragglers, which potentially
leads to improvements on the overall system performance.
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