
Rule-Based Graph Cleaning with GPUs on a Single Machine

WENCHAO BAI, Southeast University, China
WENFEI FAN, Shenzhen Institute of Computing Sciences, China, University of Edinburgh, United Kingdom,
and Beihang University, China
SHUHAO LIU, Shenzhen Institute of Computing Sciences, China
KEHAN PANG, Beihang University, China
XIAOKE ZHU, Beihang University, China
JIAHUI JIN∗, Southeast University, China

This paper studies cost-effective graph cleaning with a single machine. We adopt a rule-based method that
may embed machine learning models as predicates in the rules. Graph cleaning with the rules involves rule
discovery, error detection and correction. These tasks are both computation-heavy and I/O-intensive as they
repeatedly invoke costly graph pattern matching, and produce a large volume of intermediate results, among
other things. In light of these, no existing single-machine system is able to carry out these tasks even on not-
too-large graphs, even using GPUs. Thus we develop MiniClean, a single-machine system for cleaning large
graphs. It proposes (1) a workflow that better fits a single machine by pipelining CPU, GPU and I/O operations;
(2) memory footprint reduction with bundled processing and data compression; and (3) a multi-mode parallel
model for SIMD, pipelined and independent parallelism, and their scheduling to maximize CPU–GPU synergy.
Using real-life graphs, we empirically verify that MiniClean outperforms the SOTA single-machine systems
by at least 65.34× and multi-machine systems with 32 nodes by at least 8.09×.

CCS Concepts: • Information systems→ Data cleaning; Graph-based database models.

Additional Key Words and Phrases: Graph Cleaning Rules; Single Machine Systems; GPU

ACM Reference Format:
Wenchao Bai, Wenfei Fan, Shuhao Liu, Kehan Pang, Xiaoke Zhu, and Jiahui Jin. 2025. Rule-Based Graph
Cleaning with GPUs on a Single Machine. Proc. ACM Manag. Data 3, 3 (SIGMOD), Article 166 (June 2025),
27 pages. https://doi.org/10.1145/3725303

1 Introduction
A variety of single-machine systems have been developed for graph analytics, for in-memory
tasks when graphs can be loaded entirely into main memory [41, 54, 62, 71, 83, 85, 87], or out-
of-core processing of graphs that are too large to fit into the main memory of a machine at
once [9, 50, 51, 53, 55, 68, 76, 86, 88]. These systems efficiently support common graph analytic
queries such as connected components (CC), PageRank (PR), single-source shortest path (SSSP),
∗Corresponding author

Authors’ Contact Information: Wenchao Bai, wbai@seu.edu.cn, Southeast University, China; Wenfei Fan, wenfei@inf.ed.ac.
uk, Shenzhen Institute of Computing Sciences, China and University of Edinburgh, United Kingdom and Beihang University,
China; Shuhao Liu, shuhao@sics.ac.cn, Shenzhen Institute of Computing Sciences, China; Kehan Pang, pangkehan@buaa.
edu.cn, Beihang University, China; Xiaoke Zhu, zhuxk@buaa.edu.cn, Beihang University, China; Jiahui Jin, jjin@seu.edu.cn,
Southeast University, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 2836-6573/2025/6-ART166
https://doi.org/10.1145/3725303

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 166. Publication date: June 2025.

HTTPS://ORCID.ORG/0009-0001-1632-4347
HTTPS://ORCID.ORG/0000-0001-5149-2656
HTTPS://ORCID.ORG/0000-0002-4892-0979
HTTPS://ORCID.ORG/0009-0006-4086-1421
HTTPS://ORCID.ORG/0000-0001-5701-5279
HTTPS://ORCID.ORG/0000-0001-9570-1456
https://doi.org/10.1145/3725303
https://orcid.org/0009-0001-1632-4347
https://orcid.org/0000-0001-5149-2656
https://orcid.org/0000-0002-4892-0979
https://orcid.org/0009-0006-4086-1421
https://orcid.org/0000-0001-5701-5279
https://orcid.org/0000-0001-9570-1456
https://doi.org/10.1145/3725303

166:2 Wenchao Bai, Wenfei Fan, Shuhao Liu, Kehan Pang, Xiaoke Zhu, and Jiahui Jin

minimum spanning tree (MST) and random walk (RW).
How would these systems behave when it comes to computation problems that are more complex

and are widely practiced?
Our industry collaborators brought up such a problem to us. They aim to clean graphs using

a single machine. Given a graph𝐺 , it is to detect and correct errors in𝐺 , such as duplicates (e.g.,
different vertices denoting the same person) and conflicts (contradictory facts such as a stadium
that was torn down before it was built). They have already deployed a single-machine system for
graph association analysis in battery manufacturing production lines [29], and they want to enrich
the system with the functionality of graph cleaning. The need for single-machine graph cleaning
is also evident in industrial Internet-of-Things and edge computing (for cleaning sensor data at
collection [15, 77]) because of: (a) edge locations’ physical constraints (e.g., limited power and space)
that make cluster maintenance impractical, (b) prohibitive costs of cloud alternatives (network
bandwidth at $0.05–0.09 per GB [1]), and (c) industrial data privacy requirements that favor local
processing. These scenarios benefit from single-machine systems through reduced operational
costs, simplified deployment, and enhanced data security.

Our collaborators adopt a rule-based method utilizing Graph Cleaning Rules (GCRs) [22]. AGCR
has the form of Q[𝑥0, 𝑦0] (𝑋 → 𝑝0), where Q is a graph pattern that identifies relevant entities,
and 𝑋 → 𝑝0 is a dependency that discloses the correlations, interactions and associations of these
entities (see Section 2).GCRsmay embed machine learning (ML) models as predicates, and unify ML
prediction and logic reasoning to catch and fix errors. Cleaning a graph 𝐺 with GCRs involves dis-
covering GCRs from (samples of)𝐺 , and detecting and correcting errors in𝐺 with the mined rules.

Unfortunately, the practitioners find that none of the existing single-machine graph systems can
carry out the three tasks, even on not-very-large graphs and with GPUs. Below are a few reasons.
(1) Computation-heavy. Rule discovery, error detection and correction need to repeatedly enumerate
matches of graph pattern Q, a task that is far more costly than CC, PR, SSSP, MST and RW. Even
when GPUs are available, their memory capacity is often insufficient for large graphs 𝐺 . Moreover,
to make effective use of the computing resources and reduce their idling, nontrivial scheduling is a
must for pipelining and balancing I/O, CPU/GPU operations, and data transfers between CPU and
GPU memories.
(2) Excessive intermediate results. Rule validation may generate a large amount of intermediate re-
sults, e.g., patternmatches of variousGCRs. Simply swapping the intermediate results betweenmem-
ory and secondary storage incurs excessive I/O; it may even crash some systems that require interme-
diate results to fit inmemory [50, 53, 86]. Thus, the I/O strategies of existing systems no longer suffice.
Even with high-throughput NVMe SSDs, I/O remains a bottleneck due to repetitive loading and
evictions of intermediate results. One needs a more sophisticated strategy for memory management.
(3) Parallel model. The existing graph systems typically adopt a fixed parallel model, e.g., vertex-
centric (VC) [56, 62, 71], edge-centric (EC) [55, 68, 88], or a hybrid [89] of VC and graph-centric
(GC) [35]. However, as will be seen in Section 6, for the three graph cleaning tasks, a single
parallel model is no longer able to cope with CPU–GPU collaboration. CPUs, though with limited
parallelism, can handle flexible control flows with diverse data dependencies in irregular graph
structures. In contrast, GPUs, with massive Single Instruction, Multiple Data (SIMD) parallelism,
require parallel algorithms based on regular data structures and control flows. These call for a
multi-mode parallel model to maximize resource utilization.

MiniClean. In response to the practical need, this paper developsMiniClean, a single-machine sys-
tem for cost-effective graph cleaning. It can scale to large graphs with billions of vertices and edges,
outperforming multi-machine systems with 32 nodes by 8.09–52.20×. It is unique in the following.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 166. Publication date: June 2025.

Rule-Based Graph Cleaning with GPUs on a Single Machine 166:3

(1) Parallel graph cleaning (Section 3). MiniClean supports full-fledged graph cleaning with GCRs,
i.e., rule discovery, error detection and correction. It proposes a two-stage workflow for match
enumeration in a pipeline of I/O, CPU and GPU operations, which better fits the shared-memory
architecture of a single machine. To handle large intermediate results that exceed memory capacity,
it treats NVMe SSDs as memory extensions and main memory as cache.
(2) Host-side optimizations (Section 4). To reduce repetitive computations, intermediate results, and
data transfer between CPUs and GPUs,MiniClean develops and deploys a combination of strategies,
including (a) a bundling strategy that groups similar pattern matching tasks, (b) a compression
technique for intermediate data based on conditional succinct tables, and (c) an adaptive strategy
for recursive bundling to balance CPU and GPU workloads.
(3) A multi-mode parallel model (Section 5).MiniClean integrates (a) pipelined parallelism, which
pipelines two stages of the match enumeration workflow on CPUs and GPUs, using adaptive
bundling to balance their workloads; (b) SIMD parallelism, in which GPU threads execute the same
operation on different data elements concurrently within an enumeration task; and (c) independent
parallelism, which carries out separate enumeration tasks on a GPU simultaneously. To fully utilize
the computing resources, it proposes a strategy to schedule task execution, minimizing data I/O
and transfers. We show that it is NP-complete to find an optimal schedule; nonetheless, we develop
an effective heuristic solution.
(4) Performance (Section 6). Using real-life graphs, we experimentally find the following. (1)
MiniClean is able to clean billion-scale graphs within 4.67 h. In contrast, the state-of-the-art
(SOTA) single-machine systems cannot conduct rule discovery and error correction even in small
graphs, and cannot even do simpler error detection in large graphs within 8 h. For simpler er-
ror detection in small graphs, MiniClean is faster by 65.34× than the SOTA hybrid MiniGraph,
while both in-memory and out-of-core systems still run out-of-memory. (2) Compared to SOTA
multi-machine systems, MiniClean outperforms 32-node clusters by 9.22×, 20.42× and 8.09× in
rule discovery, error detection and error correction, respectively. (3) It is a combination of strategies
that makeMiniClean capable of cleaning large graphs, such as tasking bundling, succinct tables,
multi-mode parallelism and scheduling, which speed up the performance by up to 2.47×, 13.06×,
1.77× and 1.45×, respectively.
Organization. The rest of the paper is organized as follows.
◦ A review of GCRs and GCR-based graph cleaning (Section 2).
◦ The parallel workflow and architecture of MiniClean (Section 3).
◦ Optimization techniques for host-side computation (Section 4).
◦ The multi-mode parallel model and its schedule (Section 5).
◦ An experimental study of effectiveness and efficiency (Section 6),
◦ Related work (Section 7) and topics for future work (Section 8).

2 Graph Cleaning with GCRs
This section reviews notations (Section 2.1), GCRs (Section 2.2) and multi-machine parallel algo-
rithms for graph cleaning (Section 2.3).

2.1 Preliminaries
We start with basic notations. Assume two countably infinite alphabets, denoted by Λ and Υ, for
labels and attributes, respectively.
Graphs. A directed labeled graph is 𝐺 = (𝑉 , 𝐸, 𝐿, 𝐹𝐴), where (a) 𝑉 is a finite set of vertices; (b)

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 166. Publication date: June 2025.

166:4 Wenchao Bai, Wenfei Fan, Shuhao Liu, Kehan Pang, Xiaoke Zhu, and Jiahui Jin

Table 1. Notations and glossaries.

Notation / Term Description

𝑄 [𝑥0, 𝑥] = (𝑉𝑄 , 𝐸𝑄 , 𝐿𝑄 , 𝜇) A star pattern, whose center is 𝑥0 .
Q[𝑥0, 𝑦0] = ⟨𝑄𝑥 [𝑥0, 𝑥],𝑄𝑦 [𝑦0, 𝑦] ⟩ A dual star pattern, with two centers at 𝑥0 and 𝑦0 .
𝜑 = Q[𝑥0, 𝑦0] (𝑋 → 𝑝0) A graph cleaning rule (GCR).

Scattered match A data structure used for efficient matching enumeration of star patterns (§ 2.3).
Mono-star component 𝜔 = 𝑄 [𝑥0, 𝑥] (𝑋, 𝐹𝑄) Decomposition of a GCR, used for star matching in Stage 1 of the workflow (§ 3).
Mono-star bundle𝜓 = ⟨𝜔∗, 𝜔+ ⟩ Composition of mono-star components/bundles, used for bundled processing (§ 4.1).
Star candidate A match of a mono-star bundle (§ 3).

𝐸 ⊆ 𝑉 × Λ ×𝑉 is a finite set of edges, in which 𝑒 = (𝑣, 𝑙, 𝑣 ′) is an edge labeled 𝑙 ∈ Λ from vertex
𝑣 to 𝑣 ′; (c) each vertex 𝑣 ∈ 𝑉 has label 𝐿(𝑣) from Λ, and carries a tuple 𝐹𝐴 (𝑣) = (𝐴1, . . . , 𝐴𝑛) of
attributes of a finite arity, where 𝐴𝑖 ∈ Υ and 𝐴𝑖 ≠ 𝐴 𝑗 if 𝑖 ≠ 𝑗 . Vertices may carry different attributes,
which is not constrained by a schema like relational databases.

We assume the existence of a special attribute id at each vertex 𝑣 , denoting its vertex identity,
such that for any two vertices 𝑣 and 𝑣 ′ in 𝐺 , if 𝑣 .id = 𝑣 ′ .id, then 𝑣 and 𝑣 ′ refer to the same entity.
Paths. A path 𝜌 from a vertex 𝑣0 in𝐺 is a list 𝜌 = (𝑣0, 𝑙0, 𝑣1, . . . , 𝑣𝑛) such that (𝑣𝑖−1, 𝑙𝑖−1, 𝑣𝑖) is an edge
in𝐺 (𝑖 ∈ [1, 𝑛]). We consider simple paths on which each vertex appears at most once. A vertex 𝑣 is
called a child of 𝑢 if there exists an edge (𝑢, 𝑙, 𝑣) in 𝐸.
Star patterns. A star pattern is 𝑄 [𝑥0, 𝑥] = (𝑉𝑄 , 𝐸𝑄 , 𝐿𝑄 , 𝜇), where (1) 𝑉𝑄 (resp. 𝐸𝑄) is a set of pattern
vertices (resp. edges) as defined above; (2) 𝐿𝑄 assigns a label of Λ to each vertex in 𝑉𝑄 ; (3) 𝑥 is a list
of distinct variables, and 𝜇 is a bijective mapping from 𝑥 to the vertices of 𝑄 ; (4) 𝑥0 is a designated
variable in 𝑥 , referred to as the center of 𝑄 ; and (5) for each 𝑧 ∈ 𝑥 , there exists a single path from 𝑥0
to 𝑧, 𝑧 has at most one child, except 𝑥0. For variables 𝑧 ∈ 𝑥 , we use 𝜇 (𝑧) and 𝑧 interchangeably if it
is clear in the context.
Intuitively, 𝑄 [𝑥0, 𝑥] has the shape of a star with center 𝑥0. The center 𝑥0 denotes an entity of

interest, and it links to a set of characteristic features without children (leaf vertices), each via a path.
Dual patterns. A dual pattern is Q[𝑥0, 𝑦0] = ⟨𝑄𝑥 [𝑥0, 𝑥], 𝑄𝑦 [𝑦0, 𝑦]⟩, where 𝑄𝑥 [𝑥0, 𝑥] and 𝑄𝑦 [𝑦0, 𝑦]
are disjoint star patterns. i.e.,𝑄𝑥 and𝑄𝑦 have no common vertices. Intuitively, Q is a pair of patterns
to represent two entities 𝑥0 and 𝑦0 with (possibly) heterogeneous structures in a schemaless graph.
The star patterns specify features (property vertices) for pairwise comparison between 𝑥0 and 𝑦0.
Homomorphic mapping. A homomorphic mapping ℎ from graph 𝐺 = (𝑉𝐺 , 𝐸𝐺 , 𝐿𝐺 , 𝐹𝐺𝐴) to graph
𝐻 = (𝑉𝐻 , 𝐸𝐻 , 𝐿𝐻 , 𝐹𝐻𝐴) is a function ℎ : 𝑉𝐺 → 𝑉𝐻 such that (a) for each vertex 𝑢 ∈ 𝑉𝐺 ,
𝐿𝐺 (𝑢) = 𝐿𝐻 (ℎ(𝑢)), and (b) for each edge (𝑢, 𝑙,𝑢′) in 𝐸𝐺 , (ℎ(𝑢), 𝑙, ℎ(𝑢′)) is an edge in 𝐸𝐻 .
Pattern matches. A match of a star pattern 𝑄 in a graph 𝐺 is a homomorphic mapping ℎ from the
pattern vertices in 𝑄 to 𝐺 .

Similarly, a match of a dual pattern Q[𝑥0, 𝑦0] = ⟨𝑄𝑥 , 𝑄𝑦⟩ in graph𝐺 is a homomorphic mapping ℎ
from the pattern vertices in𝑉𝑄𝑥

∪𝑉𝑄𝑦
to𝑉 of𝐺 . Note thatℎ(𝑥0) andℎ(𝑦0) are possibly disconnected

vertices in 𝐺 . These allow us to compare entities that are disconnected and may have different
topological structures.
It has been shown that it is in PTIME to check the existence of matches of a star-shaped dual

pattern [22]. In contrast, graph pattern matching isNP-complete for generic graph patterns (cf. [39]).
The notations and glossaries are summarized in Table 1.

2.2 Graph Cleaning Rules
We next review GCRs [22], starting with their predicates.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 166. Publication date: June 2025.

Rule-Based Graph Cleaning with GPUs on a Single Machine 166:5

(paper)
�tle=BT

(author)

(author)
(paper)
�tle=�

(paper)
�tle=MR

(paper)
�tle=TF

(author)

(author)

author

author

author
author

author
author

author

author

author

author

author
author

venue
OSDI

year
2016

venue
OSDI

category
CS

venue
OSDI

year
2016

venue
OSDI

category
CS

name
Mar�n

name
Jeff

name
Paul

name
Sanjay

venueyear
(paper)
venueyear

(paper)(paper)

(author)

venue
category

name

(paper)

(author)

venue
category

name

category category

Fig. 1. Graph 𝐺 and the dual-star patterns of two GCRs 𝜑1 and 𝜑2.

Predicates. A predicate of pattern Q[𝑥0, 𝑦0]=⟨𝑄𝑥 [𝑥0, 𝑥], 𝑄𝑦 [𝑦0, 𝑦]⟩ is
𝑝 ::= 𝑥 .𝐴 ⊕ 𝑦.𝐵 | 𝑧.𝐴 ⊕ 𝑐 | M(𝑥 .𝐴,𝑦.𝐵),

where ⊕ is one of =,≠, <, ≤, >, ≥; 𝑥 ∈ 𝑥 and 𝑦 ∈ 𝑦 are variables in star patterns 𝑄𝑥 and 𝑄𝑦 ,
respectively, and 𝑧 ∈ 𝑥∪𝑦; 𝑐 is a constant;𝐴 and𝐵 are attributes in Υ; and 𝑥 .𝐴 is a list of attributes at 𝑥 .

HereM(𝑥 .𝐴,𝑦.𝐵) is an ML model that returns true iffM predicts true at (𝑥 .𝐴,𝑦.𝐵). In principle,
M can be any ML model that returns a Boolean value (e.g., M≥𝜃 for a predefined bound 𝜃).

We refer to (a) M(𝑥 .𝐴,𝑦.𝐵) as ML predicate, (b) 𝑥 .𝐴 ⊕ 𝑦.𝐵 and M(𝑥 .𝐴,𝑦.𝐵) as binary predicates,
and (c) 𝑧.𝐴 ⊕ 𝑐 as a unary predicate. Note that 𝑥 and 𝑦 are variables for vertices in 𝑄𝑥 and 𝑄𝑦 ,
respectively, to pairwisely compare features of centers 𝑥0 and 𝑦0.
GCRs. A graph cleaning rule (GCR) 𝜑 has the following form:

Q[𝑥0, 𝑦0] (𝑋 → 𝑝0),
where Q[𝑥0, 𝑦0] is a dual pattern, 𝑋 is a conjunction of predicates of Q, and 𝑝0 is a predicate of Q.
Moreover, in precondition 𝑋 , (1) binary predicates are defined on either two leaves or the centers
𝑥 and 𝑦 in the two stars of Q, respectively; and (2) each leaf may carry at most one such predicate
but multiple constant predicates 𝑧.𝐴 ⊕ 𝑐 .

We refer to Q and 𝑋 → 𝑝0 as the pattern and dependency of 𝜑 , and 𝑋 and 𝑝0 as precondition and
consequence of 𝜑 , respectively.
Intuitively, restrictions (1) and (2) above are to strike a balance between expressive power and

efficiency. Indeed, it is in PTIME to detect and correct errors with GCRs [22]. We separate Q and
𝑋 to (i) visualize the topology of 𝑥0 and 𝑦0 by Q, and (ii) speed up evaluation by leveraging the
locality of pattern matching.
Example 1: Figure 1 showcases two GCRs for conflict resolution (CR) and entity resolution (ER),
respectively, in a citation network.
(1) 𝜑1 = Q1 [𝑥0, 𝑦0] (𝑥2 .val = 𝑦2.val ∧ 𝑥4.val = 𝑦4.val ∧ 𝑦3.val = CS → 𝑥3 .val = CS). It says that
paper 𝑥0’s category should be CS if (a) it shares a coauthor with another paper 𝑦0; (b) 𝑥0 and 𝑦0 are
published in the same venue; and (c) 𝑦0 is a CS paper;
(2) 𝜑2 = Q2 [𝑥0, 𝑦0] (M𝑠 (𝑥0 .title, 𝑦0 .title) ∧ 𝑥1 .val = 𝑦1.val ∧ 𝑥2.val = 𝑦2.val ∧ 𝑥3 .val = 𝑦3.val →
𝑥0.id = 𝑦0.id). It suggests 𝑥0 and 𝑦0 be the same paper if (a) their titles roughly match (checked
by a similarity-checking model M𝑠); (b) they are published in the same venue in the same year;
and (c) they belong to the same category. 2

Semantics. We apply GCR 𝜑 = Q[𝑥0, 𝑦0] (𝑋 → 𝑝0) to graphs 𝐺 . Let ℎ denote a match of the
dual pattern Q in 𝐺 . A match ℎ satisfies a predicate 𝑝 , denoted by ℎ |= 𝑝 , if one of the following
conditions is satisfied: (a) when 𝑝 is 𝑥 .𝐴 ⊕ 𝑦.𝐵, vertex ℎ(𝑥) (resp. ℎ(𝑦)) carries attribute 𝐴 (resp. 𝐵),

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 166. Publication date: June 2025.

166:6 Wenchao Bai, Wenfei Fan, Shuhao Liu, Kehan Pang, Xiaoke Zhu, and Jiahui Jin

Algorithm 1: Parallel GCR discovery.
Input: A sample graph𝐺 , thresholds for support 𝜎 and confidence 𝛿 , Σ = ∅.
Output: A cover Σ𝑐 of discovered rules.
1 while Σ𝑖 := GenLevelGCRs(Σ, 𝜎, 𝛿) .Next() is not empty do
2 for each 𝜑 = Q[𝑥0, 𝑦0] (𝑋 → 𝑝0) in Σ𝑖 do in parallel
3 𝐻 := EnumCandidateMatches (Q, 𝑋,𝐺,𝐺);
4 pos, neg := Filter(𝐻, 𝑝0) .count, Filter(𝐻,¬𝑝0) .count;
5 if pos ≥ 𝜎 and pos

pos+neg ≥ 𝛿 then Σ := Σ ∪ {𝜑 };

6 return a cover Σ𝑐 of Σ;

Algorithm 2: Parallel error detection/correction.
Input: Airty graph𝐺 , ground truth Γ in𝐺 , a set Σ of GCRs.
Output: A set F of errors/fixes in𝐺 .
1 ΔΓ := Γ; F = ∅; /* ΔΓ keeps track of changes to ground truth Γ. */
2 for each 𝜑 = Q[𝑥0, 𝑦0] (𝑋 → 𝑝0) in Σ do in parallel
3 𝐻 := EnumCandidateMatches(Q, 𝑋,𝐺, Γ) ; cfl := Filter(𝐻,¬𝑝0) ;
4 if error detection then F := F ∪ cfl;
5 if error correction then fix cfl in𝐺 ; add fixes to F and ΔΓ;
6 if ΔΓ not empty then Γ := Γ ∪ ΔΓ; ΔΓ = ∅ goto line 2; else return F;

and ℎ(𝑥).𝐴 ⊕ ℎ(𝑦).𝐵; (b) when 𝑝 is 𝑧.𝐴 ⊕ 𝑐 , attribute 𝐴 exists at ℎ(𝑧) and ℎ(𝑧).𝐴 ⊕ 𝑐 ; and (c) when
𝑝 is M(𝑥 .𝐴,𝑦.𝐵), the ML modelM predicts true at (𝑥 .𝐴,𝑦.𝐵).

For a set 𝑋 of predicates, we write ℎ |= 𝑋 if ℎ satisfies all the predicates in 𝑋 . We refer to a match
ℎ of Q in 𝐺 as a candidate match of 𝜑 if ℎ |= 𝑋 . We write ℎ(𝑥) |= 𝑋→𝑝 if ℎ |= 𝑋 implies ℎ |= 𝑝 .

A graph 𝐺 satisfies GCR 𝜑 = Q[𝑥0, 𝑦0] (𝑋 → 𝑝0), denoted by 𝐺 |= 𝜑 , if for all matches ℎ of
Q[𝑥0, 𝑦0] in 𝐺 , ℎ |= 𝑋 → 𝑝0.
GCRs support all the primitives of relational data cleaning rules such as conditional functional

dependencies (CFDs) [24], denial constraints (DCs) [11] and matching dependencies (MDs) [23].
Here we extend the GCRs of [22] with comparison operators <, ≤, >, ≥.

2.3 Parallel Graph Cleaning with GCRs
We next outline algorithms for GCR-based graph cleaning [22].

Rule discovery. Given graph 𝐺 , this task is to mine a cover Σ𝑐 of GCRs from a sample 𝐺𝑠 of 𝐺 . It
discovers a set Σ in which each GCR has support and confidence above predefined thresholds 𝜎 and
𝛿 , respectively. It returns the cover Σ𝑐 of Σ, which is a minimum set of non-redundant GCRs that
is “equivalent to” Σ, i.e., each GCR in Σ can be entailed by Σ𝑐 via logic implication, and vice versa.

As shown in Algorithm 1, parallel discovery works in rounds [22]. Each round generates a batch
of unverified GCRs level-wise, with pruning based on the monotonicity of support [22] (line 1). It
enumerates all candidate matches 𝐻 of each GCR 𝜑 = Q[𝑥0, 𝑦0] (𝑋 → 𝑝0) (line 3) to calculate its
support and confidence (line 5) by counting candidate matches in 𝐻 that satisfy or contradict 𝑝0
(line 4). If both reach their thresholds (𝜎 and 𝛿), 𝜑 is added to Σ (line 5). Finally, a cover Σ𝑐 of Σ is
computed and returned (line 6).

Error detection. This is to apply the mined Σ to 𝐺 , and catch violations of the GCRs. For a GCR
𝜑 = Q[𝑥0, 𝑦0] (𝑋 → 𝑝0), a violation is ℎ(𝑝0), where ℎ is a valuation of 𝜑 in 𝐺 such that ℎ |= 𝑋 but
ℎ ̸ |= 𝑝0, and ℎ(𝑝0) is 𝑝0 in which each variable 𝑧 is instantiated with vertex ℎ(𝑧).MiniClean returns
all such violations as errors, including duplicates (𝑢.id = 𝑣 .id) and conflicts (𝑢.𝐴 ≠ 𝑣 .𝐵).
Algorithm 2 shows the parallel error detection algorithm of [22]. Starting from a set of ground

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 166. Publication date: June 2025.

Rule-Based Graph Cleaning with GPUs on a Single Machine 166:7

truth Γ (validated facts of the form 𝑢.𝐴 ⊕ 𝑣 .𝐵 and 𝑢.𝐴 ⊕ 𝑐), it applies each GCR 𝜑 in Σ in parallel,
invoking the same procedure for enumerating candidate matches 𝐻 as in rule discovery, except
that the precondition 𝑋 of 𝜑 is validated with the facts in Γ (line 3). It then checks each candidate
match ℎ in 𝐻 against 𝐺 , and records the violation in cfl if ℎ ̸ |= 𝑝0 (line 3). Finally, it returns the set
F consisting of all violations (line 4).

Error correction. To fix duplicates and conflicts in𝐺 , it chases𝐺 with the GCRs in Σ [32]. It accu-
mulates ground truth in a set Γ, and references Γ in the process. The process is Church-Rosser [7], i.e.,
it converges at the same fixes no matter what rules in Σ are used and in what order they are applied.
It returns the fixed graph 𝐺 as output, and extends Γ with the fixes for subsequent corrections.

Error correction has a workflow similar to error detection (Algorithm 2), except that (a) it fixes
identified conflicts in 𝐺 in-place, rather than simply keeping a record of them; (b) it recursively
applies the corrections to 𝐺 , i.e., a chase (the goto statement in line 6), by maintaining the ground
truth updates ΔΓ (i.e., ℎ(𝑝0) for each valid match ℎ in 𝐻 that makes a correction), until no more
errors are found (line 5–6); and (c) it returns the set of fixes F .
Example 2: We apply GCRs 𝜑1 and 𝜑2 in Example 1 to correct errors in graph 𝐺 (Figure 1). (a)
Initially, GCR 𝜑1 resolves a conflict with papers 𝑢1 and 𝑢2. Their categories are updated to CS
because they share a coauthor 𝑣4 and a venue with a CS paper 𝑢4. (b) After the corrections are
applied, GCR 𝜑2 identifies and merges the duplicate papers 𝑢1 and 𝑢2 in the next chase round. 2
Match enumeration. At the heart of all graph cleaning tasks is the enumeration of all candidate
matches for a GCR 𝜑 . As shown in Algorithms 1–2, prior algorithms [22] perform match enumer-
ation by invoking a PTIME procedure EnumCandidateMatches for star patterns, which is built
upon the notion of scattered matches [33].

Given a path pattern ⟨𝑝0, 𝑙0, . . . , 𝑝𝑙 ⟩ and a graph 𝐺 , the scattered matches of a node 𝑝𝑖 (0 ≤ 𝑖 ≤ 𝑙)
include all vertices 𝑣 in 𝐺 such that (a) 𝑣 matches 𝑝𝑖 ; and (b) there exists an edge between 𝑣 and a
scattered match of 𝑝𝑖+1 for 𝑖 < 𝑙 with matching edge label 𝑙𝑖 . Based on this notion, it enumerates the
matches of the source 𝑝0 by dynamic programming. Starting from the sink 𝑝𝑙 , it finds the scattered
matches of each node one after another along the path in reverse, until 𝑝0 is reached. It returns
only matches of source 𝑝0 and leaf 𝑝𝑙 . Scattered matches can thus be done in 𝑂 (|𝐺 |𝑙) time.
Procedure EnumCandidateMatches extends this idea to dual-star patterns Q and precondition

𝑋 as follows: (a) each star pattern is trivially decomposed into a set of paths from the center to each
leaf; (b) unary predicates in 𝑋 are treated as additional constraints to filter scattered matches; and
(c) binary predicates across stars on nodes 𝑝𝑚 and 𝑞𝑛 are handled by maintaining valid scattered
matches of ⟨𝑝𝑚, 𝑞𝑛⟩, where 𝑝𝑚 and 𝑞𝑛 are either centers or leaves of the two stars. With these
strategies, candidate matches of a GCR 𝜑 can be enumerated by assembling the path matches at
the center pairs. The entire procedure takes 𝑂 ((|Q| + |𝑋 |)2 |𝐺 |2) time.

3 MiniClean: A Single Machine System
This section presents an overview of system MiniClean.
Challenges. As suggested by Algorithms 1–2, match enumeration dominates the computational
cost of the graph cleaning tasks. For eachGCR𝜑 =Q[𝑥0, 𝑦0] (𝑋→𝑝0), it requires patternmatching of
dual-star patternQ in graph𝐺 and checking the precondition𝑋 in an integrated process. The process
is repeatedly invoked for different GCRs. Existing approach [22, 33], i.e., EnumCandidateMatches
via scattered matches, is designed for multi-machine systems. It partitions 𝐺 into fragments,
loads the fragments to memory of different machines at once, and enumerates matches of 𝑄 in the
fragments with different machines in parallel. However, a single machine cannot afford the resources.
To process big graphs 𝐺 and make effective use of GPU, it encounters the following challenges.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 166. Publication date: June 2025.

166:8 Wenchao Bai, Wenfei Fan, Shuhao Liu, Kehan Pang, Xiaoke Zhu, and Jiahui Jin

Algorithm 3: Two-stage match enumeration workflow.
Input: A set Σ of GCRs, a graph𝐺 , ground truth Γ.
Output: A set 𝐻𝑖 of candidate matches for each 𝜑𝑖 in Σ.
1 Ψ := BreakAndBundle(Σ) ; /* Ψ is a set of mono-star bundles. */
2 foreach mono-star bundle𝜓 in Ψ do𝐶𝜓 := MatchStar(𝜓,𝐺, Γ) ;
3 for GCR 𝜑 = Q[𝑥0, 𝑦0] (𝑋 → 𝑝0) in Σ do in parallel
4 𝐻𝜑 := EnumCrossStar (𝜑,𝐶𝜓𝑥 ,𝐶𝜓𝑦);
5 return

⋃
𝜑∈Σ 𝐻𝜑 ;

Procedure EnumCrossStar (𝜑 = Q[𝑥0, 𝑦0] (𝑋 → 𝑝0) ,𝐶𝑥 ,𝐶𝑦):
/* 𝐶𝑥 ,𝐶𝑦 : star candidates for mono-star bundles derived from 𝜑 . */

6 return (𝐶𝑥 × 𝐶𝑦) .bucketize(𝑋) .filter(𝑋) ;

(1) Irregular data access. Finding scattered matches requires frequent access to the graph structure,
leading to irregular access patterns and control flows. Such workload cannot be easily accelerated
by GPUs, underutilizing their massive SIMD parallelism.
(2) Repetitive computation. Graph cleaning applies a set Σ of GCRs to graph 𝐺 .
EnumCandidateMatches matches each GCR in Σ in separate to simplify synchronization.
This, however, can lead to repetitive computation w.r.t. matching common substructures, which are
regular among GCRs since Σ is mined in a level-wise process. A single machine cannot afford the
redundant computations.
(3) Memory usage. Maintaining scattered matches introduces excessive intermediate results, e.g.,
all valid combinations of candidate path pairs. It typically exceeds the memory capacity of a single
machine, leading to either frequent disk swaps or memory overflows.
(4) Rigid parallelism. As opposed to enumeration of a single pattern [43, 74, 79, 81, 82], we have
to match different patterns of various GCRs. At each fragment, EnumCandidateMatches exploits
independent parallelism, by enumerating the scattered matches of different path patterns in parallel.
This does not fully utilize the hardware concurrency of GPUs. Worse yet, it incurs even heavier
memory footprint, since parallel tasks maintain their intermediate results in memory at the same
time, multiplying the space overhead.

Workflow overview. To overcome these challenges, MiniClean adopts a set of strategies to
optimize match enumeration. Departing from algorithms of [22, 33], it (a) decouples and reassembles
the two star patterns in two stages, allowing heavy-duty work to take regular data structures and be
accelerated on GPUs; (b) bundles similar stars together for grouped match enumeration, mitigating
repetitive computation (Section 4.1); (c) compresses intermediate data to reduce memory footprint
(Section 4.2); and (d) adopts a multi-mode parallel model to maximize CPU–GPU synergy (Section 5).

More specifically, as shown in Algorithm 3.MiniClean adopts a two-stage workflow to enumerate
matches for a set of GCRs.
Stage 1: Star matching. Given a set Σ ofGCRs, graph𝐺 , and ground truth Γ, this stage reorganizes Σ
into a set Ψ ofmono-star bundles (line 1), and enumerates star candidates of each bundle in Γ (line 2).
The reorganization (line 1) starts with decomposing each GCR in Σ into two mono-star com-

ponents. That is, it breaks GCR 𝜑 = Q[𝑥0, 𝑦0] (𝑋 → 𝑝0) into 𝜔𝑥 = 𝑄𝑥 [𝑥0, 𝑥] (𝑋𝑥 , 𝐹𝑄𝑥
) and

𝜔𝑦 = 𝑄𝑦 [𝑦0, 𝑦] (𝑋𝑦, 𝐹𝑄𝑦
), where (a)𝑄𝑥 [𝑥0, 𝑥] (resp.𝑄𝑦 [𝑦0, 𝑦]) is the left (resp. right) star ofQ[𝑥0, 𝑦0];

(b)𝑋𝑥 (resp.𝑋𝑦) is the conjunctions of all unary predicates defined on 𝑥 (resp.𝑦); and (c) each vertex
𝑣 in 𝑉𝑄𝑥

(resp.𝑉𝑄𝑦
) carries a tuple 𝐹𝑄𝑥

(𝑣) (resp. 𝐹𝑄𝑦
(𝑣)) of variable attributes associated with 𝑝0 or

binary predicates of 𝑋 ; their values will be materialized during the following match enumeration.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 166. Publication date: June 2025.

Rule-Based Graph Cleaning with GPUs on a Single Machine 166:9

(paper)

(author)

year

(paper)

(author)

Matches Condi�ons

OSDI null TF 2016 {M, P,
J, S}

OSDI null � 2016 {M, P,
J, S}

OSDI CS MR null {J, S}
OSDI CS GFS null {J, S}

Matches

{J, S} OSDI
{J, S} OSDI

{ }

{ }

- -

Stage 1 Stage 2

venue

venue

category

category

name

name
Fix

Fig. 2. The two-stage workflow of match enumeration.

Intuitively, each mono-star component preserves all information local to a star pattern of 𝜑 , while
keeping track of cross-star associations via 𝐹𝑄𝑥

and 𝐹𝑄𝑦
. Then, “similar” mono-star components

are grouped into a composite mono-star structure, termed a mono-star bundle, using the bundling
techniques proposed in Section 4.1.
For each mono-star bundle𝜓 in Ψ,MiniClean performs match enumeration for𝜓 using CPUs

(line 2), materializing star candidates, i.e., matches of a mono-star bundle that satisfy its associated
unary predicates with validated facts in Γ.MiniClean adapts the algorithm of [33] to mono-star bun-
dles via scatteredmatches, in𝑂 ((|𝑄𝜓 |+|𝑋𝜓 |) |𝐺 |) time. The final result is a set of star candidates, com-
pressed in a table-like structure (see Section 4.2) to facilitate efficient parallelism in the next stage.
Stage 2: Cross-star enumeration. Using star candidates from Stage 1, this stage completes the match
enumeration process by assembling the star candidates for both stars of each GCR with GPUs.
For a given GCR 𝜑 , MiniClean retrieves the star candidates 𝐶𝜓𝑥

and 𝐶𝜓𝑦
, for the star patterns

𝑄𝑥 and 𝑄𝑦 of 𝜑 (line 4), respectively. It then scans each pair of candidates in the Cartesian product
𝐶𝜓𝑥

×𝐶𝜓𝑦
, checking whether the binary predicates are satisfied (line 6).

The two-stage workflow introduces the following benefits.
Reduced intermediate results. It makes more efficient use of the limited memory capacity. It
decouples the dual patterns of a GCR, thus avoiding the need to maintain combinations of
candidate path pairs. As will be seen in Section 4.2, the materialized star candidates take at most
𝑂 (|𝑄 | |𝑉 |2) space for each GCR, as opposed to 𝑂 (|𝑄 |2 |𝑉 |4) space by EnumCandidateMatches of
[22, 33]. Moreover, it substantially speeds up the computation as will be seen in Section 6.
Pipelining. The workflow optimizes performance by exploring the strengths of CPU and GPU for
different stages of the workflow.
Star matching is executed on the host CPU, utilizing all cores. This stage accesses irregular

graph data, which is difficult for GPUs due to their SIMD architecture. CPUs are better suited for
managing these. Moreover, star matching generates relatively large sets of star candidates, which
the CPU can better manage by leveraging its access to larger main memory and SSDs. This is hard
for GPUs, which have limited memory and no direct access to external storage.

MiniClean offloads cross-star enumeration to the GPU. Before this stage, the star candidates are
organized into table-like structures, well-suited for GPU processing. The stage involves checking
the Cartesian product of star candidates, an expensive yet highly parallel task at which GPUs excel
due to their massive hardware concurrency with SIMD, substantially speeding up the process.

MiniClean offers efficient pipelined execution in this way, improving resource utilization and sys-
tem performance. Its bundling strategy (Section 4.3) balances the workload between the two stages.

Example 3: Using GCRs Σ = {𝜑1, 𝜑2} from Example 1, Figure 2 depicts the two-stage workflow of
match enumeration. For simplicity, some optimization strategies are omitted.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 166. Publication date: June 2025.

166:10 Wenchao Bai, Wenfei Fan, Shuhao Liu, Kehan Pang, Xiaoke Zhu, and Jiahui Jin

Host GPU
SSDs

Graph

Rule Set

Swap

Answers

StarBundler

DataReader

RuleParser

StarMatcher

BufferManager

Bucketizer

ResultAggregator

GPU
Proxy

MatchEnumerator

QueryParser

Tasks

ThreadBlock
Task

ThreadBlock
Task

Results
Results

…

MonoStars

Candidates

RuleGenerator

…
Compressor

Scheduler

Fig. 3. The pipelined architecture of MiniClean.

(1) GCRs 𝜑1 and 𝜑2 have 4 star patterns. Based on similarity, Stage 1 produces two mono-star
bundles: (a)𝜓1 with the right star of 𝜑1, (b)𝜓2, a bundle of the left star of 𝜑1 and both of 𝜑2. Then
for each bundle, it finds all star candidates in 𝐺 , materialized in a table.
(2) Stage 2 assembles candidates for 𝜑1 and 𝜑2 with𝜓1 and𝜓2. For 𝜑1, it checks all pairs of star candi-
dates of𝜓1 and𝜓2, filtered with𝑋1. For𝜑2, it checks the self join of candidates for𝜓2, filtered by𝑋2. 2

Pipelined architecture. MiniClean takes as input a graph𝐺 and thresholds 𝜎 and 𝛿 . It discovers
a cover Σ𝑐 of the set Σ of GCRs that have support above 𝜎 and confidence above 𝛿 , from a sample
of𝐺 . Then upon users’ request, it detects and/or corrects the errors in𝐺 by applying the GCRs in
Σ𝑐 . As illustrated in Figure 3, MiniClean is built around a pipeline that effectively orchestrates the
two-stage workflow for match enumeration. It uses a central Scheduler to manage memory buffer,
overlap I/O operations and CPU/GPU computations, maximizing resource utilization (detailed in
Section 5). The architecture organizes the following pipeline stages.
(1) Job configuration.QueryParser takes user input, prepares data, and configures jobs for match
enumeration. It has (a) DataReader, which loads input graphs𝐺 from storage; (b) RuleGenerator,
which generates unverified GCRs level-wise, and (c) RuleParser, which parses GCRs mined offline
for error detection and correction.
(2) Star matching. Given a match enumeration job with a set Σ of GCRs, RuleBundler transforms Σ
into a set Ψ of mono-star bundles. For each bundle𝜓 in Ψ, StarMatcher identifies all star candidates
𝐶𝜓 . The candidates are then passed to Bucketizer, which materializes them into buckets based on
specific attribute values. It groups matches with similar attribute values to speed up similarity
checking and subsequent verification for binary predicates.
(3) Candidate management. BufferManagermanages materialized star candidates in buckets, for (a)
compressing candidates within each bucket, (b) managing memory by transparently swapping data
between the host memory and SSDs, treating the former as a cache with schedule-based evictions;
and (c) packing the compressed buckets into discrete tasks, preparing them for GPU processing.
(4) Cross-star enumeration. With star candidates organized, tasks are delegated to the GPU for
parallel processing. GPUProxy manages the GPUs, whereMatchEnumerator performs Stage 2 of
the workflow. Results for each task are collected for the final response.
(5) Response. Finally, ResultAggregator compiles the results of candidate matches of GCRs and
synthesizes them as a coherent output.

4 Optimizing Star Matching
This section presents star bundling (Section 4.1), candidate compression (Section 4.2), and adaptive
bundling strategies (Section 4.3) for optimizing star matching and balancing CPU/GPU workloads.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 166. Publication date: June 2025.

Rule-Based Graph Cleaning with GPUs on a Single Machine 166:11

(paper)

(author)

venue category
name

year

(paper)

venue category

(paper)

(author)

venue category

name
year

(paper)

venue categoryIntersec�on

Union

Fig. 4. Bundling of mono-star components 𝜑1 .𝑄𝑦 and 𝜑2 .𝑄𝑦 .

4.1 Bundled Processing
We start with bundled matching of mono-star bundles to reduce the cost of candidate enumeration
for a group of star patterns.
Motivation. Star matching takes as input a set Ψ of mono-star components and enumerates star
candidates for each. It is costly. Worse yet, it cannot be accelerated on a GPU due to the irregular
memory access and the data-dependent control flow on a graph 𝐺 . For a mono-star component
𝑄 [𝑥0, 𝑥] (𝑋, 𝐹𝑄) in Ψ, it takes 𝑂 ((|𝑄 | + |𝑋 |) |𝐺 |) time to enumerate the star candidates of 𝜓 in 𝐺 ,
even via scattered matches. While it is hard to further speed up single star matching, can we do
better in handling a large set Ψ at once?
Strawman 1: Independent matching. With multiple machines, Algorithms 1–2 separately match each
mono-star from Ψ. However, this solution does not consider common substructures, e.g., path pat-
terns shared by the mono-stars. Common substructures are regular in practice, since the mono-star
components in Ψ are derived from GCRs mined in a level-wise manner. This leads to (a) redun-
dant computation since matching common substructures yields repetitive work, and (b) excessive
CPU–GPU transfers, since candidates for the common substructures inflict repetitive data transfers.

These suggest that we leverage common substructures shared by the mono-star components in
Ψ. Below is an attempt.
Strawman 2: Extracting common substructures. One may want to (a) extract common substructures
(e.g., paths) of mono-star components, (b) materialize their matches, and (c) assemble the matches
into star candidates for each 𝜔 in Ψ by joining at the central vertex.

In principle, this approach adapts the concept of interleaved execution from multi-query optimiza-
tion [49, 67, 69] and adapts it to star matching; however, it is surprisingly expensive. The common
substructures, especially shared paths, often have a large number of matches, since they relax the
constraints of the original mono-star components. This leads to a heavy memory footprint to match
a single star pattern, and worse yet, the materialization and assembly of these matches introduce
excessive overhead w.r.t. joining and filtering. Such inefficiencies are exacerbated in practice. To
enumerate matches for star 𝑄𝑦 of Q1 in Figure 1, Strawman 2 takes 10.7s, with 6.7s for assembling
alone. In contrast, matching via scattered matches takes 2.6s, using ≤ 63.2% of peak memory.
Our solution. In light of these, we propose bundled processing to reduce the materialization
of candidate matches and repetitive computations caused by common substructures. Instead of
breaking down mono-star components in Ψ into smaller pieces, MiniClean groups “similar” ones
into a larger bundle and matches it as a whole.
Bundling two stars. It is possible to bundle two mono-star components 𝜔𝑙 = 𝑄𝑙 [𝑥0, 𝑥𝑙] (𝑋𝑙 , 𝐹𝑄𝑙

)
and 𝜔𝑟 = 𝑄𝑟 [𝑥0, 𝑥𝑟] (𝑋𝑟 , 𝐹𝑄𝑟

) into a mono-star bundle 𝜓 if their center 𝑥0 share the same label.
Intuitively, it is to “join” stars 𝜔𝑙 and 𝜔𝑟 at the center 𝑥0, while keeping track of both their common
paths and distinct ones.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 166. Publication date: June 2025.

166:12 Wenchao Bai, Wenfei Fan, Shuhao Liu, Kehan Pang, Xiaoke Zhu, and Jiahui Jin

… …

… J …

… S …

… … … …

Condi�onal succinct matches Unfolded matches

Matches Condi�ons

OSDI CS {J, S} MR null

OSDI CS {J, S} GFS null

OSDI null {M, P, J, S} TF 2016

OSDI null {M, P, J, S} � 2016
Filtered out by

Fig. 5. Conditional succinct table.

Formally, the bundle𝜓 of mono-stars 𝜔𝑙 and 𝜔𝑟 is a tuple ⟨𝜔𝑙 ⊗ 𝜔𝑟 , 𝜔𝑙 ⊕ 𝜔𝑟 ⟩. Here (a) 𝜔𝑙 ⊗ 𝜔𝑟 =

𝑄𝑙∗𝑟 [𝑥0, 𝑥𝑙 ∩𝑥𝑟] (𝑋𝑙 ∩𝑋𝑟 , 𝐹𝑄𝑙∗𝑟) represents the common substructure of𝜔𝑙 and𝜔𝑟 , where pattern𝑄𝑙∗𝑟
is the maximum common induced subgraph of 𝑄𝑙 and 𝑄𝑟 , and 𝐹𝑄𝑙∗𝑟 includes all variable attributes
shared by 𝐹𝑄𝑙

and 𝐹𝑄𝑟
; (b) 𝜔𝑙 ⊕ 𝜔𝑟 = 𝑄𝑙+𝑟 [𝑥0, 𝑥𝑙 ∪ 𝑥𝑟] (∅, 𝐹𝑄𝑙+𝑟) represents the complete structure of

𝜔𝑙 and 𝜔𝑟 . Its pattern 𝑄𝑙+𝑟 is the join of 𝑄𝑙 and 𝑄𝑟 at the common center 𝑥0, with the paths in 𝑄𝑙∗𝑟
deduplicated; and (c) 𝐹𝑄𝑙+𝑟 (𝑣) = 𝐹𝑄𝑙

(𝑣) ∪ 𝐹𝑄𝑟
(𝑣) carries attributes in either 𝐹𝑄𝑙

or 𝐹𝑄𝑟
.

By matching the mono-star bundle𝜓 against graph 𝐺 , MiniClean avoids repetitive computation
on the common substructure 𝜔𝑙 ⊗ 𝜔𝑟 . Moreover, the complete structure preserves all useful proper-
ties. Compared to independent matching, its overall computational workload is reduced by a factor
of Θ(|𝑄𝑙∗𝑟 |+|𝑋𝑙∩𝑋𝑟 |

|𝑄𝑙 |+|𝑄𝑟 |+|𝑋𝑙 |+|𝑋𝑟 |). Moreover, this approach produces a single shared set of star candidates for
the mono-star bundles, significantly reducing both the size of intermediate results and the volume
of CPU–GPU data transfers.

Example 4: Continuing with Example 1, Figure 4 illustrates the bundle𝜓2 of mono-star compo-
nents 𝜑1.𝑄𝑦 and 𝜑2.𝑄𝑦 . Here we relabel the two as 𝑄𝑙 [𝑥0, 𝑥𝑙] (𝑋𝑙 , 𝐹𝑄𝑙

) and 𝑄𝑟 [𝑥0, 𝑥𝑟] (𝑋𝑟 , 𝐹𝑄𝑟
),

where predicates 𝑋𝑙 = {𝑥2.val = CS}, 𝑋𝑟 = ∅, attributes 𝐹𝑄𝑙
= {𝑥1 .val, 𝑥2.val, 𝑥4 .val}, and

𝐹𝑄𝑟
= {𝑥0.title, 𝑥1 .val, 𝑥2.val, 𝑥5 .val}.

The bundle𝜓2 has (1)𝑄𝑙∗𝑟 [𝑥0, 𝑥𝑙 ∩𝑥𝑟] (𝑋𝑙 ∩𝑋𝑟 , 𝐹𝑄𝑙∗𝑟) as the common substructure, where 𝑋𝑙 ∩𝑋𝑟

includes 𝑥2 .val = CS and 𝐹𝑄𝑙∗𝑟 = {𝑥1.val, 𝑥2 .val}; and (2) 𝑄𝑙+𝑟 [𝑥0, 𝑥𝑙 ∪ 𝑥𝑟] (∅, 𝐹𝑄𝑙+𝑟) is the complete
structure, where 𝐹𝑄𝑙+𝑟 = {𝑥0 .title, 𝑥1.val, 𝑥2 .val, 𝑥4.val, 𝑥5.val}. 2

Recursive bundling. Given a large set of mono-star components Ψ,MiniClean performs bundling
recursively, by selecting two mono-stars based on a similarity measure, removing both from Ψ,
bundling the pair and adding their bundle back to Ψ. The process iterates until no more mono-
stars can be bundled or it is suppressed by the Scheduler for load balancing (see Section 4.3).
Recursive bundling is a simple extension to bundling two mono-stars, i.e., bundling𝜓𝑙 = ⟨𝜔∗

𝑙
, 𝜔+

𝑙
⟩

and𝜓𝑟 = ⟨𝜔∗
𝑟 , 𝜔

+
𝑟 ⟩ yields𝜓𝑙,𝑟 = ⟨𝜔∗

𝑙
⊗ 𝜔∗

𝑟 , 𝜔
+
𝑙
⊕ 𝜔+

𝑟 ⟩.

4.2 Star Candidate Compression
We next introduce a compressed data structure for materializing bucketized star candidates, to
reduce the size of intermediate results. For clarity, we focus on a single bucket in this discussion.
Background. Matching a mono-star bundle generates a large number of star candidates. A naive
approach to materializing them is a large table, where each row represents a complete match for the
star pattern. It takes𝑂 (|𝑉 | |𝑄 |) space since the rows consist of the Cartesian product of all scattered
matches of leaf nodes. To reduce the intermediate results, we develop amore compact representation.

Succinct table. We propose a join-free succinct table for star candidates, compressing a long table
losslessly. It organizes the star candidates around the central node of the star pattern, as follows.
(1) Rows. Each row is indexed by a unique vertex 𝑣 in 𝐺 , where 𝑣 is a match for the center 𝑥0 of the
star pattern. In other words, a row keyed by 𝑣 encodes all star candidates centered at 𝑣 .

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 166. Publication date: June 2025.

Rule-Based Graph Cleaning with GPUs on a Single Machine 166:13

(2) Columns. In a row keyed by 𝑣 , each column encodes a complete list of the matches of a specific
leaf. The columns only include matches of leaves for cross-star checking, i.e., leaf IDs and marked
attributes (Section 3) in consequence 𝑝0 or binary predicates.
As opposed to join-free structures [2, 59, 72, 78], this succinct table does not require additional

metadata to be lossless. It leverages two properties of star candidates: (a) star candidates are
combinations of path matches centered on a common vertex, and (b) the marked attributes only
exist at the center or leaf nodes. Thus, its size is in 𝑂 (|𝑉 |2 |𝑄 |) by grouping path matches by their
shared center. It makes the buckets compact enough to fit in limited GPUmemory without requiring
too fragmented bucketization. Moreover, such tables can be efficiently constructed. The algorithm of
scattered matches naturally groups leaf matches by center vertices, and directly inserts appropriate
cells into the table.
Conditioning on bundled stars. An additional complication is that we must differentiate the star
candidates for each individual star in the bundle. Adapting conditional tables [6, 8, 42, 46, 73], we
extend the succinct table with condition columns. The conditional structure efficiently differentiates
the star candidates for each mono-star component while avoiding unnecessary materialization.
More specifically, consider the bundle 𝜓 = ⟨𝜔1 ⊗ 𝜔2, 𝜔1 ⊕ 𝜔2⟩ of mono-stars 𝜔1 and 𝜔2. The

conditioned succinct table includes (a) matches, which are stored in the columns w.r.t. 𝜔1 ⊗ 𝜔2, and
(b) conditions, which are stored in additional columns for (𝜔1 ⊕ 𝜔2) \ (𝜔1 ⊗ 𝜔2), i.e., the distinct
substructures of 𝜔1 and 𝜔2. If no matches exist for a center 𝑣 , its corresponding entry is set to null.
Direct candidate retrieval. To recover the star candidates for a mono-star component, e.g., 𝜔1, we
can filter rows by the extended conditions. For each row, one only needs to check the condition
columns for 𝜔1, i.e., all columns that represent the materialized attributes of 𝜔1 distinct from 𝜔2. If
any value is null, the row does not contribute to a valid match for 𝜔1, and it can be discarded. If a
valid match exists, it is part of the star candidates for 𝜔1.

We only access relevant matches without recomputing or performing joins, thus supporting fast
access to star candidates.
Example 5: Continuing with Example 4, Figure 5 illustrates the conditional succinct table for
bundle𝜓2. Its rows are indexed by matches of center 𝑥0 and its columns store: (1) attributes from
𝐹𝑄𝑙∗𝑟 , including 𝑥1.val and 𝑥2.val; and (2) attributes from 𝐹𝑄𝑙+𝑟 including 𝑥4 .val, 𝑥0.title and 𝑥5.val.
The matches of 𝜑2 .𝑄𝑥 can be retrieved by filtering out rows that violate 𝑋1, i.e., 𝑥2 .val = CS. 2

4.3 Balancing CPU and GPUWorkloads
In recursive bundling, it is not always beneficial to bundle as many mono-stars as possible, since
bundling shifts the workload from CPU to GPU. Here we discuss this tradeoff and introduce an
adaptive bundling strategy to guide the bundling process.
Trade-off in bundling. While bundled processing reduces redundant computations in Stage 1 (star
matching on the CPU) via a shared conditional succinct table, it introduces added complexity to
Stage 2 (cross-star enumeration on the GPU) for differentiating and recovering the star candidates
of each individual mono-star.

Such a trade-off is illustrated in Example 4. Without bundling, the CPU must match 4 mono-stars
of GCRs 𝜑1 and 𝜑2 separately, incurring redundant computation on the mono-stars of 𝜑2. The
GPU can then directly process these matches. In contrast, matching bundles𝜓1 and𝜓2 yield two
succinct tables with 2 and 4 rows, reducing the CPU workload. However, it comes at the cost of
additional star candidate recovery work on the GPU, as shown in Example 5.

To optimize workload balance, we propose an adaptive bundling strategy that adjusts the bundling

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 166. Publication date: June 2025.

166:14 Wenchao Bai, Wenfei Fan, Shuhao Liu, Kehan Pang, Xiaoke Zhu, and Jiahui Jin

process based on real-time pipeline conditions. This strategy addresses two key questions: (a) should
bundling continue, and if so, (b) which pair of mono-stars should be prioritized for bundling? We
start with similarity measures that quantify the gains and costs of bundled processing.
Similarity measures. Recursive bundling is conducted by quantifying the similarity between
mono-star components. On the one hand, when two components have larger common substructures,
bundling them reduces more redundant computations. On the other hand, it introduces overhead
when retrieving matches from their shared, materialized star candidates. Hence we introduce two
metrics to evaluate both shared and distinct substructures.
Reward. Consider two mono-stars 𝜔1 = 𝑄1 [𝑥0, 𝑥1] (𝑋1, 𝐹𝑄1) and 𝜔2 = 𝑄2 [𝑥0, 𝑥2] (𝑋2, 𝐹𝑄2) with
common substructure 𝜔1 ⊗ 𝜔2 = 𝑄1∗2 [𝑥0, 𝑥1 ∩ 𝑥2] (𝑋1 ∩ 𝑋2, 𝐹𝑄1∗2). The reward 𝑅 measures the
computational cost saved by matching 𝑄1∗2 as follows:

𝑅(𝜔1, 𝜔2) = (|𝑄1∗2 | + |𝑋1 ∩ 𝑋2 |) |𝐺 |.
Penalty. The penalty measures the additional computational overhead incurred by retrieving indi-
vidual matches from bundled candidates. The conditional succinct table allows candidate retrieval in
a linear scan of all rows. Given the bundle𝜓 of mono-stars 𝜔1 and 𝜔2, the penalty 𝑃 is proportional
to the table size:

𝑃 (𝜔1, 𝜔2) = 𝛼 |𝐶 (𝑄1∗2 [𝑥0, 𝑥1] (𝑋1 ∩ 𝑋2, 𝐹𝑄1∗2)) |,
where 𝛼 is a constant factor to account for the accelerated filtering scan on the GPU, and |𝐶 (·) |
denotes the number of star candidates for a given mono-star bundle, which can be efficiently and
accurately obtained using cardinality estimation techniques [65].

The reward and penalty quantify the tradeoff between the computational costs of the two work-
flow stages, executed on the host CPU and GPU, respectively. Intuitively, the reward captures the
benefit of bundling by quantifying redundant computation that can be avoided. The larger the com-
mon substructure, the greater the benefit. Conversely, the penalty reflects the additional overhead
introduced. It increases with the size of the conditional succinct table, i.e., the number of star can-
didates. Next, we leverage them to balance workloads, thereby improving the pipelined processing.

Adaptive bundling.MiniClean employs an adaptive bundling strategy that dynamically monitors
GPU task backlogs and adjusts bundling decisions based on real-time workload conditions.

ItsGPUProxymaintains a queue of tasks awaiting GPU processing. It continuously tracks the size
of this queue, measured by the total number of star candidates pending GPU processing. Intuitively,
the queue size reflects the workload imbalance between the CPU and GPU. A large queue indicates
that the GPU is becoming a bottleneck, while a small/empty queue implies GPU underutilization.
Based on the real-time queue size 𝜏 , MiniClean operates in three modes, governed by two

thresholds, 𝜏1 and 𝜏2, where 0 < 𝜏1 < 𝜏2:
(1) Greedy mode (𝜏 ≤ 𝜏1). When the CPU generates star candidates at a rate slower than the GPU
can handle, MiniClean aggressively bundles tasks. In this mode, it selects mono-star pairs with the
highest reward (𝑅) to maximize the reduction in CPU workload.
(2) Balanced mode (𝜏1 < 𝜏 ≤𝜏2). Given a relatively balanced pipeline,MiniClean prioritizes bundling
based on the reward–penalty ratio (𝑅/𝑃), optimizing overall system throughput by balancing the
trade-offs between bundling benefits and associated overhead.
(3) Disabled mode (𝜏 > 𝜏2). When the GPU becomes overloaded, bundling is disabled. Unprocessed
mono-star components are processed independently to allow the GPU to catch up, and prevent
unnecessary overhead on the system bottleneck.
At a high level, this adaptive strategy dynamically adjusts the bundling process based on the

current workload distribution among the CPU and GPU, minimizing the risk of overloading the GPU

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 166. Publication date: June 2025.

Rule-Based Graph Cleaning with GPUs on a Single Machine 166:15

while allowing the CPU to offload tasks when necessary. The thresholds 𝜏1 and 𝜏2 are determined
via profiling (see Section 6).

5 Hybrid Parallel Model
This section studies a multi-mode parallel model and its scheduling.

5.1 Multi-mode parallelism
MiniClean employs multiple parallel modes to maximize resource utilization.
Pipelined parallelism. MiniClean pipelines two stages of match enumeration across CPU and GPU,
overlapping the two to improve throughput and “canceling” the cost of SSD data swapping and
CPU–GPU data transfers. Unlike prior GPU-accelerated systems that offload nearly all computation
to GPU and use CPU only for lightweight tasks (e.g., kernel management, result aggregation), it
exploits the strengths of both in different stages (Section 3).
SIMD parallelism. MiniClean exploits SIMD parallelism by having GPU threads to concurrently
process different data components. By the use of succinct tables (see Section 4.2), a regular data
structure for cross-star enumeration to be easily parallelized across GPU threads, it fully utilizes all
threads without leaving any idle.
Independent parallelism.MiniClean also enables independent parallelism by running multiple cross-
star enumeration tasks on a GPU simultaneously, each processing a pair of star candidate buckets.
Since the buckets have variable sizes, a task on small buckets has limited SIMD parallelism, leading
to many idle threads if it monopolizes the GPU. As we will see in Section 6, allowing multiple tasks
to share the GPU resources substantially improves GPU utilization.
Example 6: Consider the workflow in Example 3. MiniClean exploits (1) pipelined parallelism
by attempting to overlap Stage 1 and Stage 2 operations; (2) SIMD parallelism by allowing GPU
threads to process different rows of a conditional succinct table; and (3) independent parallelism
by processing both tables on the GPU concurrently. The three modes are combined to maximize
resource utilization, subject to memory and data placement constraints. 2

The scheduling problem. While the model mitigates resource idling, it introduces challenges to
scheduling tasks across the pipeline to fully realize the potential of hybrid parallelism.
Problem Statement. Given a set 𝐴 of𝑚 star matching tasks on the CPU and a set 𝐵 of 𝑛 cross-star
enumeration tasks on the GPU, where each task 𝑏 in 𝐵 depends on the results of two tasks 𝐷𝑙 (𝑏)
and 𝐷𝑟 (𝑏) in 𝐴 (i.e., the mono-star bundles for 𝑏’s left and right patterns, respectively), it is to
find an optimal schedule S∗ = ⟨𝛼, 𝛽, 𝑝 (𝑡)⟩, where 𝛼𝑖 ∈ 𝛼, 𝑖 ∈ [1,𝑚] (resp. 𝛽 𝑗 ∈ 𝛽, 𝑗 ∈ [1, 𝑛]) denotes
the completion time of task 𝑎𝑖 (resp. 𝑏 𝑗), and 𝑝𝑖 (𝑡) ∈ 𝑝 (𝑡), 𝑖 ∈ [1,𝑚] is for the placement flags
of star candidates of 𝛼𝑖 at time 𝑡 . We assume w.l.o.g. that the tasks in 𝐴 and 𝐵 are sorted in the
chronological order of their completion times. Its objective function is

S∗ = arg min
S

𝛽𝑚 . (1)

It is to minimize the makespan of a schedule S, i.e., the completion time 𝛽𝑚 of the last cross-star
enumeration task 𝑏𝑚 . A valid schedule is subject to constraints: (1) the completion 𝛼𝑖 of task 𝑎𝑖 ∈ 𝐴

must not be earlier than the total execution time of tasks 𝑎1, . . . , 𝑎𝑖 ; (2) the star candidates of tasks
𝐷𝑙 (𝑏 𝑗) and 𝐷𝑟 (𝑏 𝑗) must reside in the GPU memory between the time duration [𝛽 𝑗 − 𝑐 (𝑏 𝑗), 𝛽 𝑗],
where 𝑐 (𝑏 𝑗) is cost of task 𝑏 𝑗 on the GPU; (3) at any time point 𝑡 , the total size of host memory
(resp. GPU memory)-residing star candidates must not exceed the host memory (resp. GPU
memory) capacity; and (4) any change of data placement between 𝑝 (𝑡) and 𝑝 (𝑡 + Δ𝑡) must respect

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 166. Publication date: June 2025.

166:16 Wenchao Bai, Wenfei Fan, Shuhao Liu, Kehan Pang, Xiaoke Zhu, and Jiahui Jin

Algorithm 4: Greedy scheduling algorithm of MiniClean.
Input: A set Σ of pending GCRs, a graph𝐺 , and a state DAG 𝑆 at time 𝑡 .
Output: The next scheduled GCR 𝜑 , and an updated state DAG 𝑆 ′ .
1 𝜑target := null; 𝑆 ′ = null; 𝑐 = +∞;
2 foreach GCR 𝜑 in Σ do
3 S̄𝜑 := SimSchedule(𝑆,𝜑) ; /* Compute all valid updated statuses. */
4 foreach Updated status 𝑆𝜑 in S̄𝜑 when GCR 𝜑 is scheduled next do
5 𝑐𝜑 := max{𝐶IO (𝑆𝜑),𝐶trans (𝑆𝜑) };
6 if [𝑐𝜑 < 𝑐] or [𝑐𝜑 = 𝑐 and𝐶GCR (𝑆 ′, 𝜑target) > 𝐶GCR (𝑆𝜑 , 𝜑)] then 𝜑target := 𝜑 ; 𝑆 ′ := 𝑆 ′𝜑 ; 𝑐 := 𝑐𝜑 ;

7 return 𝜑target, 𝑆
′;

the SSD and GPU transfer bandwidth constraints.
Its decision problem, denoted by DSP, is to decide, given the input and a deadline 𝐵, whether

there exists a valid schedule S with makespan at most 𝐵. The problem is intractable.
Theorem 1: DSP is NP-complete. 2

Proof sketch: DSP is in NP since one can guess a schedule and check in PTIME whether it is valid
and its makespan is at most 𝐵. We show that it is NP-complete by reduction from the partition
problem (see [5] for a proof), which is NP-complete (cf. [39]). 2

5.2 A Scheduling Strategy
Theorem 1 suggests that an optimal schedule is intractable to find. A particular complication is
that task execution requires loading data into limited host or GPU memory, which often leads to
data eviction and can complicate the scheduling of subsequent tasks.

We propose a system that makes locally optimal scheduling decisions by modeling states. Based
on the current state, its Scheduler selects the next tasks to schedule while considering whether
there is sufficient memory, either host or GPU, to accommodate the required data. If not, it evicts
other data to free space.
Computation state. At any time 𝑡 , the state of computation is modeled as a directed acyclic graph
(DAG) 𝑆𝑡 . The DAG extends traditional dependency graphs by capturing dependencies on both
computation and data placement. It models the pipelined execution with disk I/O, host–GPU data
transfers, and a two-stage workflow.

In 𝑆𝑡 , each node represents a data status, encoded as a data–placement tuple. It indicates whether
a piece of data is materialized in the SSD, the host memory, or GPU memory. Edges between nodes
represent computation tasks and/or data loading, with associated weights denoting the costs of
materializing the data downstream.

The DAG captures the system state at time 𝑡 . From 𝑆𝑡 , we can derive the system’s minimum cost
from time 𝑡 onward: (a) I/O 𝐶IO (𝑆𝑡), (b) data transfer 𝐶trans (𝑆𝑡), (c) host computation 𝐶cpu (𝑆𝑡), and
(d) enumeration latency 𝐶GCR (𝑆𝑡 , 𝜑) for a GCR 𝜑 . We can also estimate the host and GPU memory
usage, denoted by𝑀cpu (𝑆𝑡) and𝑀gpu (𝑆𝑡), respectively. Further details are deferred to [5].
Scheduling strategy. At any time 𝑡 , we greedily decide the next tasks and manage data eviction. We
select one pending GCR 𝜑 from Σ as the target, and prioritize all tasks on which 𝜑 depends. If the
host or GPU memory has no room for the required data materialization, we selectively evict other
unused data to make room.
Since determining the global makespan of the remaining computation is intractable, we use

scheduling overhead as a local metric. The overhead indicates the added cost to the system bottleneck

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 166. Publication date: June 2025.

Rule-Based Graph Cleaning with GPUs on a Single Machine 166:17

Star Candidates
(Bundle ψ1, size=6) GCR φ1

GCR φ2Star Candidates
(Bundle ψ2, size=4)

MatchesGPU MemoryHost MemorySSD
Star Candidates

(Bundle ψ1, size=6)

Star Candidates
(Bundle ψ2, size=4)

I/O Transfer

2

3 5

5

2

Star Candidates
(Bundle ψ1, size=6) 6

Graph G
8

GCR φ3Star Candidates
(Bundle ψ3, size=6)

Star Candidates
(Bundle ψ3, size=6) 3 25

Fig. 6. State DAG, where dark nodes denote materialized data.

when scheduling 𝜑 . These costs stem from data evictions from the host or GPU memory, incurring
extra I/O and data transfer for pending tasks. The overhead helps us decide on resource reallocation.
Given state DAG 𝑆𝑡 and GCR 𝜑 to schedule, we estimate the scheduling overhead as follows.

(a) Data materialization: Mark all data statuses associated with 𝜑 as materialized. (b) Memory
feasibility: Check whether the host/GPU memory can accommodate the materialization. (c) Eviction
plans: Generate updated states S̄𝜑 based on data eviction strategies under memory constraints. (d)
Bottleneck cost: For each updated state 𝑆𝜑 in S̄𝜑 , calculate the bottleneck cost 𝑐𝜑 , i.e., the maximum
I/O and data transfer cost.
Algorithm 4 outlines our scheduling algorithm. It iterates over all pending GCRs in Σ and

simulates the impact of scheduling each one (line 2). The goal is to find the GCR 𝜑target and
corresponding updated state 𝑆 ′ that minimize the scheduling overhead. (1) For each GCR 𝜑 , we
compute all valid updated states S̄𝜑 (line 3). (2) For each updated state 𝑆𝜑 in S̄𝜑 , we compute the
bottleneck cost 𝑐𝜑 (line 5). (3) The GCR 𝜑 with the lowest cost is selected as the target 𝜑target, and
its updated state 𝑆 ′ is recorded (line 6).

Intuitively, the strategy aims to reduce the frequency of forced evictions, which typically increases
overhead. By focusing on GCRs that minimize bottleneck costs, we exploit data locality and reduce
the cost of data reloads. If multipleGCRs have the same overhead, we prioritize the GCR 𝜑 with the
lowest remaining enumeration cost𝐶GCR (𝑆𝑡 , 𝜑). We favor tasks closer to completion (line 6), ensur-
ing that the pipeline remains filled with tasks ready for execution. In this way, we balance scheduling
efficiency with resource management, to continue processing tasks without unnecessary delays.
Example 7: Continuing with Example 3, Figure 6 depicts a state DAG 𝑆𝑡 for GCRs 𝜑1 and 𝜑2, and
another GCR 𝜑3. At time 𝑡 , the star candidates for bundle 𝜓1 have been materialized in the host
memory, while bundles𝜓2 and𝜓3 have not been computed yet.
With 𝑆𝑡 , our scheduling strategy tests each pending GCR (line 2). (1) The bottleneck cost 𝑐𝜑1

of 𝜑1 is always higher than that of 𝜑2, due to their shared critical path. Thus, 𝜑1 is not scheduled
first due to the positive condition at line 6 with 𝜑2. (2) When the host memory capacity is 11, it
schedules 𝜑2, because it incurs no overhead, while scheduling 𝜑3 would lead to eviction of𝜓1’s star
candidates, increasing the I/O cost to 10. (3) If the host memory capacity is 13, it schedules 𝜑3, since
neither 𝜑2 nor 𝜑3 incurs scheduling overhead, and 𝜑3 has lower remaining cost (line 6). 2

Interaction with adaptive bundling. Bundling decisions may directly alter the topology of the
state DAG, creating a tight coupling between the scheduling and bundling. This coupling adds
complication. To address this, we decouple the process into three steps: (1) recursively bundle the
mono-stars in Ψ based on the current mode (see Section 4.3); (b) apply the scheduling strategy to
the resulting state DAG; and (c) remove the scheduled mono-stars from Ψ and restore the remaining
ones to their original, unbundled form.

This decoupling accommodates interaction between bundling and scheduling, ensuring that the
system remains adaptive. Our experiments (Exp-3, Section 6) verify its effectiveness in practice.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 166. Publication date: June 2025.

166:18 Wenchao Bai, Wenfei Fan, Shuhao Liu, Kehan Pang, Xiaoke Zhu, and Jiahui Jin

Table 2. Graph cleaning benchmark: dataset details.

Graph Versions |𝑉 | |𝐸 | #Labels #Attributes #Duplicates #Conflicts
Real/Synthetic Real/Synthetic

BioGRID 4.4.235 4.0M 26.5M 10 38 0.08M / 0.28M 0 / 0.27M
IMDB 23.06–24.06 5.2M 48.2M 4 19 15K / 0.52M 0 / 0.52M

SemScholar 23.10–24.08 0.16B 0.75B 10 20 0.21M / 0 0.06M / 0

Remarks. (1) Our scheduling strategy avoids the need to estimate computational costs. Instead, it
adopts scheduling overhead, which depends solely on the materialized sizes of star candidates, and
can be assessed by cardinality estimation techniques [65]. (2) Given a set Σ of pending GCRs, the
scheduling algorithm runs in 𝑂 (|Σ|2) time. Since Σ is small in practice, the overhead is negligible
and the algorithm can be executed frequently as the state DAG is updated.

6 Experimental Study
This section presents our graph cleaning datasets (Section 6.1) and the evaluation of MiniClean
against various baselines (Section 6.2).

6.1 Graph Cleaning Datasets
To test real-world graph cleaning tasks, we constructed three real-life graph datasets, as summarized
in Table 2. All graphs are created from open-source datasets from different application domains.
(1) BioGRID [64] is a protein-protein interaction (PPI) network; its vertices denote interactions,
proteins and genes, and edges represent their relationships and annotations. Since it integrates
data from multiple sources, duplicates are expected, including synonyms.
(2) IMDB [3] is a movie database; its vertices denote movies, actors, directors and genres. Its
edges model relationships like casting (actor to movie), directing (director to movie), and genre
classification (movie to genre). Errors include duplicates for movies or people.
(3) SemScholar [4] is a billion-scale graph. Its vertices represent papers, authors and venues, and
edges denote citations, authorship and affiliations. Its automatic data crawling introduces errors
such as duplicate authors/papers, and conflicting affiliations or venues.

Graph construction. We construct each of the datasets as follows.
(1) Graph extraction. BioGRID and IMDB are distributed across multiple tables; we converted the
tables to graphs using the standard RDB2Graph method. SemScholar is inherently a graph; we
accessed its data through itsWeb service APIs, ensuring accurate extraction. The resulting graphs are
property graphs, where vertices are enriched with key-value pairs representing various attributes.
(2) Real errors. While all three datasets have duplicates, real conflicts are rare in BioGRID and IMDB
since both are curated and have been under maintenance for years by dedicated teams. SemScholar
has a large number of attribute updates. We manually flagged ones with semantic errors as conflicts,
excluding evolving facts.
(3) Synthetic errors. To test various data cleaning methods, we injected synthetic errors into the
graphs following [40, 61], controlled by noise ratio 𝛽% = 10% and duplication ratio 𝛾% = 10%. By
default, we picked 3% of the data in the original graphs as ground truth Γ0.
(4) Training/testing split. We split each dataset into training and testing sets for embedded ML
models, with the ratio of 80/20.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 166. Publication date: June 2025.

Rule-Based Graph Cleaning with GPUs on a Single Machine 166:19

6.2 Experimental Evaluation
Using the graphs, we evaluated MiniClean versus (1) SOTA single-machine systems for graph
cleaning, (2) multi-machine graph cleaning systems to verify the cost-effectiveness; and (3) its own
variants to assess the effectiveness of our proposed system optimizations.
Experimental setup. We start with the experimental settings.
Baselines. Single-machine graph baselines include (1) in-memory CoroGraph [87], (2) out-of-core
Blaze [50], and (3) hybrid system MiniGraph [89]. We implemented the GCR mining and error
detection/correction algorithms of [22, 33]. Since CoroGraph and Blaze do not support property
graphs, we treat labels and properties as status variables in these systems. We also tested (4)
HyperBlocker [90], a GPU-accelerated ER system, adapted to graph data.
To evaluate the relative efficiency and accuracy against ML-based solutions, we tested (5)

Ditto [52] for ER and (6) KGClean [40] for CR, each was trained in their default settings using the
designated training sets, e.g., with the use of negative examples.
We also compared with multi-machine baselines: (7) GCRClean, which uses GCRs [22]; and

(8) GARClean, which uses more complex GARs [27] with the discovery and deduction algorithms
from [21, 27]. Both systems are built on GraphScope [25], a leading multi-machine graph system.

For ablation tests, we evaluated variants of MiniClean: (9) noGPU, which disables GPU acceler-
ation; (10) noCompress, which materializes star candidates without compression; (11) noBundle,
which skips mono-star bundling (see Section 4.1); (12) allBundle, which performs bundle greedily,
not adaptively (see Section 4.3); (13) noPipelinedPar, which disables pipelined parallelism; (14)
noIndPar, which disables independent parallelism (see Section 5); and (15) randSchedule, which
executes tasks in a random order.
ML models. MiniClean, GCRClean and GARClean employ the following pre-trained ML models
as predicates: Jaccard similarity [47] and SimCSE [38] for textual data similarity checking and
clustering, and DeepER [19] for ER. The rule discovery algorithm of GCRClean (resp. GARClean)
adopts an LSTM-based model for path (resp. pattern) selection. We trained each model as 2-layer
models following [60] in their default configurations, using the training splits.
Testbeds. Our primary testbed for single-machine systems and the ML-based ER/CR solutions is an
enterprise-grade GPU server. It is powered by 2× Intel Xeon Gold 6254 @3.10GHz CPUs, each of
which has 16 physical cores with hyperthreading. It is also equipped with 64 GB of DDR4 RAM
and 4× NVIDIA Tesla V100 32GB GPUs. It has 4× 2TB Samsung 990Pro NVMe SSDs, each of which
has an average throughput of 7.4 MB/s and 6.9 GB/s for sequential read and write, respectively.
Unless stated otherwise, we used all available CPUs and a single GPU for acceleration.
We deployed multi-machine GCRClean and GARClean on a GraphScope cluster with up to 32

machines, where each is powered by an Intel Xeon @2.2GHz 12-core CPU and 128GB DDR4 RAM.
Configurations. For rule discovery, we set 𝜎 = 105, 𝛿 = 0.9 and 𝛼 = 5 as the default thresholds for
support, confidence and the number of predicates, respectively. We set an upper bound |𝑉𝑄 | ≤ 10
for the pattern size, where 𝑉𝑄 denotes the vertex set of pattern 𝑄 . Since it takes long to mine a
complete set of rules, we curtailed our evaluation to the first 100 rules mined for all methods. For
error detection and correction, we used a rule set of size |Σ| = 100 by default.

We profiledMiniClean to determine appropriate threshold values for the GPU task queue, i.e., 𝜏1
and 𝜏2 (Section 4.3). They were tuned based on observed CPU and GPU utilization, ensuring
high resource utilization even under transient workload changes. We present the average of each
experiment over 5 repetitions. We report results over some datasets; the other results are consistent.

Experimental results. We next report our findings.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 166. Publication date: June 2025.

166:20 Wenchao Bai, Wenfei Fan, Shuhao Liu, Kehan Pang, Xiaoke Zhu, and Jiahui Jin

Table 3. Error detection efficiency with single-machine systems.

Graph & Metric BioGRID IMDB SemScholar

Time (s) I/O (GB) Time (s) I/O (GB) Time (s) I/O (GB)

MiniClean 259.6 18.97 325.5 23.82 2993.7 92.54
CoroGraph/Blaze OOM OOM OOM OOM OOM OOM

MiniGraph 65.34× 10.73× TO TO TO TO
HyperBlocker 11.29× 5.74× OOM (GPU) OOM (GPU) OOM (GPU) OOM (GPU)

⋄ “OOM” denotes out-of-memory, “TO” denotes timeout after 8h.

Table 4. Efficiency and accuracy of MiniClean vs. ML models.

System
BioGRID IMDB SemScholar

Time ER-F1(%) CR-F1(%) Time ER-F1(%) CR-F1(%) Time ER-F1(%) CR-F1(%)
all (real) synthetic all (real) synthetic real real

MiniClean 312.7s 98.7 (97.5) 97.2 409.1s 99.9 (94.0) 80.4 4089.1s 94.6 70.6
Ditto 7.7× 91.2 (91.0) N/A 8.0× 95.6 (90.8) N/A 4.3× 90.3 N/A

KGClean 11.9× N/A 54.9 64.2× N/A 20.0 11.9× N/A 29.8

Exp-1: Comparison with single-machine systems. We first evaluated MiniClean vs. single-
machine systems. We find that rule discovery and error correction are beyond reach of all baselines,
which are either out-of-memory (OOM) or timeout (TO) after 8h. In contrast,MiniClean completes
these within 4.67 h and 1.14 h on the billion-scale SemScholar, respectively. Thus we only report the
efficiency of error detection in Table 3, using rules mined by MiniClean. We also tested MiniClean
against ML-based solutions.
Error detection. Table 3 reports the cost of error detection, including time and I/O. We find the
following. (1) In-memory CoroGraph and out-of-core Blaze run out-of-memory on all datasets,
since both require the intermediate data to fit into the memory. (2) Over small BioGRID,MiniClean
beatsMiniGraph by 65.34× and generates 90.68% less I/O, benefiting from reduced synchronization
and intermediate data size. Moreover, it is 11.29× faster than HyperBlocker, despite both using
GPUs. The speedup stems from (a) more efficient use of GPU resources via task bundling and
multi-mode parallelism, and (b) reduced I/O via data compression. (3) Over IMDB, MiniGraph
cannot finish the computation within 8 h, while MiniClean detects errors in 325.5s. HyperBlocker
easily runs out of GPU memory due to the sheer size of intermediate results. (4) No baseline can
handle SemScholar, a large graph; in contrast, MiniClean completes the task in 49.9 min. These
justify the practicality of a specialized graph cleaning solution, which exhibits reasonable efficiency
and cost effectiveness to large real-world graphs.
Accuracy. For error correction over small BioGRID and IMDB, we report the accuracy ofMiniClean
for ER and CR versus ML-based solutions. We used test sets that contain a small percentage (2.5–
3.5%) of ground truth verified by domain experts, which served as starting points for our error
correction processes. The accuracy is measured using the F1-score = 2· precision·recallprecision+recall , where precision
(resp. recall) is the ratio of detected real errors to all the rule violations (resp. all real errors).

As shown in Table 4, (1) for ER,MiniClean’s F1-score is up to 7.5% higher than Ditto in BioGRID
and IMDB, GCRs unify logic reasoning and ML, reducing false positives (FPs) by 76.2% and false
negatives (FNs) by 78.7% of ML predictions. (2) For CR, MiniClean is 42.3–60.4% more accurate
than KGClean. (3) For real ER errors, the F1-score of MiniClean is up to 6.5% higher than Ditto. It
reduces FPs (resp. FNs) in large SemScholar by 79.2% (resp. 28.6%). For real CR errors,MiniClean
is 40.8% more accurate than KGClean. This is because with GCRs, it can leverage the ground truth
to detect errors with more certainty than ML models; moreover, it conducts ER and CR in the same
process, allowing them to interact with each other. (4)MiniClean is not only 11.9–64.2× faster, but
also more accurate than ML models. Moreover, its rule mining time is less than 30% of the model

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 166. Publication date: June 2025.

Rule-Based Graph Cleaning with GPUs on a Single Machine 166:21

0.2 0.6 1.0
0

10000

Ti
m

e
(s

)

MiniClean-1-GPU
MiniClean-2-GPU
MiniClean-4-GPU

GCRClean
GCRClean-16-Node
GCRClean-32-Node

GARClean
GARClean-16-Node
GARClean-32-Node

400006000080000

2 4 8 16 32
Nodes

0
400
800Ti

m
e

(s
)

(a) Scalability, BioGRID.

10000
40000
70000

4 6 8 100
500

1000Ti
m

e
(s

)

(b) Varying |𝑄 | , BioGRID.

10000200004000080000

1 5 10 50 100800

1000

1200

Ti
m

e
(s

)

(c) Varying 𝜎 (×104) , BioGRID.

10000200004000080000

0.6 0.7 0.8 0.9 10
1000
2000Ti

m
e

(s
)

(d) Varying 𝛿 , BioGRID.
Fig. 7. Mining efficiency of MiniClean vs. multi-machine systems.

10000
4000080000

2 4 8 16 32
Nodes

0

200

400Ti
m

e
(s

)

Fig. 8. Detection
scalability, IMDB

6000090000120000

2 4 8 16 32
Nodes

0
2000
4000Ti

m
e

(s
)

(a) Scalability, SemScholar.

50002000080000

20 40 60 80 1000

200

400Ti
m

e
(s

)

(b) Varying |Σ | , IMDB.

10000
50000

100000

20 40 60 80 1000
2000
4000Ti

m
e

(s
)

(c) Varying |Σ | , SemScholar.
Fig. 9. Correction efficiency of MiniClean vs. multi-machine systems.

training. This affirms the practicality of MiniClean.

Exp-2: Comparison with multi-machine systems. We next evaluated the efficiency of
MiniClean vs. multi-machine systems. By default, we compareMiniClean against 32-node clusters.
Rule discovery: efficiency. As shown in Figure 7a on BioGRID, (1) with a single GPU, MiniClean
completes rule discovery in 970.9s. It is 9.22× and 40.78× faster than a 32-node GCRClean and
GARClean cluster, respectively. This is becauseMiniClean can efficiently leverage the massively
parallel computation power of GPUs in a shared-memory environment, while multi-machine
systems typically incur significant communication costs and suffer from straggler nodes. Moreover,
MiniClean costs only 0.66% monetarily based on AWS pricing [1], verifying the cost-effectiveness of
single-machine systems. (2) Using more GPUs significantly speeds up MiniClean. When equipped
with 2 GPUs (resp. 4 GPUs), it becomes 1.54× (resp. 2.06×) faster, beating a 32-node GCRClean
cluster by 14.21× (resp. 19.07×). These further justify the practicality of MiniClean.
Rule discovery: varying |𝑄 |. Figure 7b reports the impact of pattern size |𝑄 | on rule mining efficiency
over BioGRID. As expected, all systems get slower as |𝑄 | increases.MiniClean is relatively more
sensitive to |𝑄 | thanGCRClean. When |𝑄 | varies from 4–10,MiniClean is slowed by 2.53×, whereas
GCRClean takes 2.40× longer. This is becauseMiniClean employs task bundling. It is more effective
for a smaller |𝑄 |, since a common substructure is more likely among a set of smaller patterns,
especially in rules generated for mining.
Rule discovery: varying 𝜎 and 𝛿 . On IMDB, Figures 7c–7d show the impact of varying support and
confidence thresholds on the cost of rule discovery. (1) As 𝜎 increases, all systems run faster due to
the anti-monotonicity of support in GCRs and GARs, which reduces the search space.MiniClean
is less sensitive to changes in 𝜎 than the multi-machine baselines. (2) Higher 𝛿 leads to longer time
for rule discovery by all systems, since more GCRs have to be checked to find 100 rules that have
high enough confidence. This is evidenced by the 2.0× slowdown ofMiniClean when 𝛿 varies from
0.9 to 1, since rules with absolute certainties are much rarer. (3) In all settings of 𝜎 and 𝛿 ,MiniClean
consistently outperforms the competitors tested, e.g., 32-machine GCRClean and GARClean by
8.99–16.98× and 38.67–52.20×, respectively.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 166. Publication date: June 2025.

166:22 Wenchao Bai, Wenfei Fan, Shuhao Liu, Kehan Pang, Xiaoke Zhu, and Jiahui Jin

Table 5. Ablation studies for match enumeration. CPU and GPU utilizations are measured in relative terms.

Dataset Metric MiniClean noGPU noCompress noBundle allBundle noPipelinedPar noIndPar randSchedule

BioGRID
(1 GPU)

Time 259.56 s 36.37× 12.62× 2.47× 1.11× 1.65× 1.33× 1.45×
Match Size 18.97 GB 2.42× 5.74× 2.42× 0.64× 0.79× 1.07× 1.18×
Mem-GPU 20.87 GB N/A 5.22× 2.20× 0.70× 0.85× 1.05× 4.17×
CPU Util 1 +100.9% -38.6% -23.7% -42.8% -43.8% -13.8% -29.7%
GPU Util 1 N/A +90.9% -62.6% +58.3% -37.1% -28.7% -35.1%

IMDB
(1 GPU)

Time 325.54 s 37.57× 13.06× 2.02× 1.19× 1.77× 1.15× 1.24×
Match Size 23.82 GB 2.06× 5.71× 2.06× 0.58× 0.91× 1.25× 1.21×
Mem-GPU 27.56 GB N/A 4.93× 1.78× 0.62× 0.96× 1.15× 4.63×
CPU Util 1 +117.0% -12.1% -18.8% -74.6% -49.4% -19.4% -14.5%
GPU Util 1 N/A +120.6% -40.7% +157.9% -49.1% -39.9% -31.4%

SemScholar
(2 GPUs)

Time 2993.68 s Timeout Timeout 1.35× Timeout 1.26× 1.12× 1.20×
Match Size 92.54 GB Timeout Timeout 1.33× Timeout 0.93× 1.02× 1.08×
Mem-GPU 103.57 GB Timeout Timeout 1.20× Timeout 0.95× 1.13× 2.32×
CPU Util 1 Timeout Timeout -13.0% Timeout -30.2% -11.0% -10.7%
GPU Util 1 Timeout Timeout -32.9% Timeout -25.3% -29.1% -15.9%

Error detection: efficiency. Figure 8 shows the efficiency of error detection over IMDB. (1)MiniClean
consistently beats 32-node GCRClean cluster by 20.42×, and GARClean cluster by 95.82×. (2) Like
for rule discovery, using more GPUs,MiniClean substantially speeds up error detection. Using 2 and
4 GPUs, it is 1.36× and 1.73× faster, respectively. 4 GPU-MiniClean can detect all errors in 231.0s.
Error correction: efficiency. As shown in Figure 8a over SemScholar, the error correction efficiency
has a trend similar to detection.MiniClean is 8.09–37.64× faster than the baselines in a 32-node
setting; it gets a speedup by 1.94× using 4 GPUs.
Error correction: varying |Σ|. We tested the impact of the size |Σ| of the rule set on the efficiency of
error correction. As shown in Figures 8b–8c, all rule-based systems get slower as |Σ| increases, as
expected. This said, MiniClean’s performance decline is sub-linear; it remains much faster than
GCRClean and GARClean, because its task bundling (Section 4.1) reduces redundant computations.

Exp-3: Ablation studies. We conducted ablation studies to evaluate the impact of various opti-
mizations of MiniClean. These help pinpoint the contributions of specific features to the match
enumeration efficiency, as shown in Table 5, which details system metrics.
Computing power of GPUs. Compared to noGPU that disables GPU acceleration and uses CPUs
only for parallel computation, MiniClean is at least 36.37× faster in match enumeration over
different graphs. This indicates that the algorithms of MiniClean make effective use of massive
SIMD parallelism of GPUs (Section 2).
Impact of data compression. Succinct tables for GPU join operations accelerate match enumeration
by > 12.62× on BioGRID and IMDB. Although uncompressed star candidates in noCompress
utilizes GPU better for the uniform layout, they incur > 4.93× data transfers and underutilize the
CPU. Without using succinct tables, noCompress cannot handle large SemScholar, since the data
structure has a compression ratio of around 17.5%, significantly reducing data transfer. These justify
the need for data compression.
Impact of bundled processing.MiniClean is 1.35–2.47× faster than noBundle that skips mono-star
bundling and matches each star in separate, since it reduces data transfers by up to 2.20× and
has a 32.9–62.6% higher GPU utilization. Note that noBundle has a lower CPU utilization since
its 1.33–2.42× larger star candidates generate more I/O, which may block CPU operations.
Moreover,MiniClean beats allBundle by up to 1.19× on small graphs, and allBundle cannot handle
SemScholar, as its greedy bundling incurs heavy and unbalanced GPU workloads (+58.3–157.9%

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 166. Publication date: June 2025.

Rule-Based Graph Cleaning with GPUs on a Single Machine 166:23

utilization), especially on large graphs. These justify the need for adaptive star bundling.
Effectiveness of hybrid parallelism. Hybrid parallelism inMiniClean improves resource utilization
and helps overlap computation with I/O operations. As shown in Table 5, disabling either pipelined
or independent parallelism substantially hampers performance.MiniClean beats noPipelinedPar
by 1.26–1.77× because pipelined processing improves CPU utilization by 30.2–49.4% and GPU
utilization by 25.3–49.1%. Without independent parallelism, noIndPar is slowed by 1.12–1.33×, due
mainly to the underutilized GPU (-28.7–39.9%). These verify the effectiveness of hybrid parallelism.
Effectiveness of scheduling. As compared to randSchedule that processes tasks in a random order,
MiniClean is 1.20–1.45× faster. This is because its scheduling strategy minimizes resource idling, as
evidenced by the reduced data transfer (2.32–4.63× lower), improved CPU utilization (+10.7–29.7%)
and GPU utilization (+15.9–35.1%). These underscore the effectiveness of scheduling strategy.
Summary. We find the following. (1) No single-machine systems are able to support rule discovery
and error correction even in small graphs. Moreover, error detection in large graphs is beyond
the reach of such systems. In contrast, MiniClean completes rule discovery, error detection and
error correction in billion-scale graphs within 4.67 h, 0.83 h and 1.14 h, respectively. For error
detection in small graphs, it outperformsMiniGraph by 65.34×, while both in-memory CoroGraph
and out-of-core Blaze run out-of-memory. (2) Using a single GPU, MiniClean outperforms a 32-
node GCRClean cluster by at least 9.22×, 20.42× and 8.09× in rule discovery, error detection and
error correction, respectively. (3) For real-life error detection,MiniClean is up to 6.5% and 40.8%
more accurate than ML-based ER and CR models, respectively. (4) The capability of MiniClean for
cleaning large graphs comes from a combination of strategies, such as bundled processing, succinct
tables, multi-mode parallelism and scheduling, which speed up the performance by up to 2.47×,
13.06×, 1.77× and 1.45× respectively. (5) MiniClean scales well with GPUs. Using 4 GPUs, it is
2.06× faster than using 1 GPU and beats a 32-node cluster by 19.07× in rule discovery.

7 Related Work
We categorize the related work as follows.
Graph cleaning systems. Various rule-based systems have been developed for graph cleaning. They
employ different graph dependencies for, e.g., RDFs [10, 18, 20, 44] and property graphs [22, 27, 30–
34]. Among these, earlier work [27, 30–32, 34] adopt generic graph patterns and thus require
EXPTIME for enumeration. This is impractical for cleaning large graphs, despite recent efforts in
parallelizing algorithms for rule discovery [14, 21, 26, 28, 36, 37, 63, 66]. In contrast, MiniClean
uses GCRs [22], which may embed ML models as predicates and allow deep ER and CR via chase.
Moreover, it is in PTIME to detect and correct errors withGCRs, since they employ a dual pattern to
specify characteristic features of disconnected entities. Efficient multi-machine parallel algorithms
have been developed [22, 33] for GCR mining, error detection and correction.

As opposed to multi-machine solutions, MiniClean is the first single-machine system capable of
cleaning billion-scale graphs. Using a single machine with GPUs, it addresses unique challenges
not previously encountered, such as the limited computation and memory capacity, and the hetero-
geneous parallel architecture with CPU and GPU. To tackle these, it develops a two-stage workflow
that accelerates heavy-duty tasks on GPUs, departing from prior algorithms for GCRs [22, 33].
Moreover, it proposes a combination of optimization strategies that are tailored to a single machine
with limited resources, providing a cost-effective solution.

Besides graph dependencies, ML-based graph cleaning adopts graph embeddings [40, 84], edit
histories [75], language models [13], or user annotations [12] to catch and fix errors. However, they
are less accurate (see Section 6), because an ML model (a) targets either ER or CR, but not both in a

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 166. Publication date: June 2025.

166:24 Wenchao Bai, Wenfei Fan, Shuhao Liu, Kehan Pang, Xiaoke Zhu, and Jiahui Jin

unified recursive process, while the two interact with each other for overall data quality [33], and
(b) cannot reliably leverage ground truth to make certain fixes [32].
Single-machine graph systems. General-purpose graph analytics systems aim to support custom
graph algorithms, simplifying user programming with a high-level graph abstraction. These include
in-memory ([41, 54, 62, 71, 83, 85, 87]), semi-external ([50, 53, 86]), and out-of-core [9, 51, 55, 68,
76, 88, 89] systems. While they support graph cleaning in theory, most are unable to manage
the excessive intermediate results of match enumeration. The only exception isMiniGraph [89];
however, it can only detect errors in small graphs, and requires partitioning the graph into small
subgraphs, incurring substantial overhead for among-subgraph synchronization.

Closer to this work are specialized graph mining systems. To find matches of a general pattern
in a graph, CPU-based solutions [17, 48, 57, 58, 70] require all auxiliary data to fit into the main
memory, and cannot scale to large graphs. Recent GPU-accelerated systems [16, 43, 45, 74, 79–82]
offload pattern matching jobs entirely to the SIMD architecture of GPUs, by transforming the
computation into e.g., set operations. Such techniques are limited to counting queries only and are
not applicable to match enumeration.

In contrast,MiniClean is specialized for graph cleaning withGCRs, for tasks distinct from simple
graph analytics queries. As opposed to existing graph mining systems, it (a) is tailored for dual-
star patterns rather than general patterns, enabling unique optimizations, e.g., star bundling and
candidate compression; (b) manages large intermediate results that exceed the memory capacity by
treating SSDs as extensions; (c) goes beyond match enumeration, supporting more complex rule
validation and error correction; and (d) balances workload between the CPU and GPU adaptively
to maximize their synergy, rather than allocating tasks statically.
Conditional tables. Designed to model the uncertain data [46], a conditional table [6, 8, 42, 46, 73] is
a relation where each tuple is annotated with a condition over some variables. MiniClean extends
the concept to represent the materialized bundled star candidates. Our conditional succinct table
leverages the filtering capability of annotations, indexing the pattern-level conditions alongside the
predicate-level conditions. Moreover, it integrates the nested data representation [2, 59, 72, 78] for a
compressed data layout. Capitalizing on the unique properties of GCR, e.g., dual-star patterns with
center/leaf-only predicates, it requires neither additional meta-information [2, 59] nor complex
unnesting operations [72, 78].

8 Conclusion
To the best of our knowledge,MiniClean is the first system for graph cleaning with a single machine.
It supports rule discovery, error detection, and error correction, while no SOTA single-machine
systems can mine rules or correct errors even in small graphs. To make a single-machine system
capable of cleaning large graphs, MiniClean develops and deploys a combination of techniques,
such as (a) a pipeline of CPU and GPU operations to their synergy, (b) a bundling strategy to reduce
redundant matching, (c) conditional succinct tables to reduce memory footprint, (d) a multi-mode
parallel model to maximize resource utilization, and (e) task scheduling to overlap I/O and CPU/GPU
operations. None of the techniques alone suffices for graph cleaning with a single machine. Our
empirical study has verified that MiniClean is promising in practice.

Topics for future work include (a) ML-aided scheduling to optimize parallel processing, and (b)
the capacity of a single machine for other complex computational problems such as fraud detection.

Acknowledgments
Jiahui Jin is supported in part by China NSFC under Grant No. 62232004.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 166. Publication date: June 2025.

Rule-Based Graph Cleaning with GPUs on a Single Machine 166:25

References
[1] 2024. Amazon AWS Pricing. https://aws.amazon.com/pricing.
[2] 2024. Apache Parquet. https://parquet.apache.org/.
[3] 2024. IMDB Graph Dataset. https://www.cs.toronto.edu/ oktie/linkedmdb/linkedmdb-latest-dump.zip.
[4] 2024. SemanticScholar Academic Graph. https://www.semanticscholar.org/.
[5] 2025. Online full version. https://shuhaoliu.github.io/assets/papers/wenchao-sigmod25-miniclean-full.pdf.
[6] Serge Abiteboul and Oliver M Duschka. 1998. Complexity of Answering Queries Using Materialized Views. In PODS.

254–263.
[7] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases. Addison-Wesley.
[8] Serge Abiteboul, Paris Kanellakis, and Gösta Grahne. 1991. On the Representation and Querying of Sets of Possible

Worlds. TCS 78, 1 (1991), 159–187.
[9] Zhiyuan Ai, Mingxing Zhang, Yongwei Wu, Xuehai Qian, Kang Chen, and Weimin Zheng. 2017. Squeezing Out All

the Value of Loaded Data: An Out-of-Core Graph Processing System with Reduced Disk I/O. In USENIX ATC. 125–137.
[10] Waseem Akhtar, Alvaro Cortés-Calabuig, and Jan Paredaens. 2010. Constraints in RDF. In SDKB. 23–39.
[11] Marcelo Arenas, Leopoldo Bertossi, and Jan Chomicki. 1999. Consistent Query Answers in Inconsistent Databases. In

PODS. 68–79.
[12] Abdallah Arioua and Angela Bonifati. 2018. User-Guided Repairing of Inconsistent Knowledge Bases. In EDBT.

133–144.
[13] Hiba Arnaout, Trung-Kien Tran, Daria Stepanova, Mohamed Hassan Gad-Elrab, Simon Razniewski, and Gerhard

Weikum. 2022. Utilizing Language Model Probes for Knowledge Graph Repair. In Wiki Workshop 2022.
[14] Lihan Chen, Sihang Jiang, Jingping Liu, Chao Wang, Sheng Zhang, Chenhao Xie, Jiaqing Liang, Yanghua Xiao, and Rui

Song. 2022. Rule Mining Over Knowledge Graphs via Reinforcement Learning. KBS 242 (2022), 108371.
[15] Mao Chen, Wen Chen, and Yongqi Zhu. 2021. A Novel Big Data Cleaning Algorithm Based on Edge Computing in

Industrial Internet of Things. In CTISC. 194–198.
[16] Xuhao Chen and Arvind. 2022. Efficient and Scalable Graph Pattern Mining on GPUs. In USENIX OSDI. 857–877.
[17] Xuhao Chen, Roshan Dathathri, Gurbinder Gill, Loc Hoang, and Keshav Pingali. 2021. Sandslash: A Two-Level

Framework for Efficient Graph Pattern Mining. In ICS. 378–391.
[18] Alvaro Cortés-Calabuig and Jan Paredaens. 2012. Semantics of Constraints in RDFS. In AMW. 75–90.
[19] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq R. Joty, Mourad Ouzzani, and Nan Tang. 2018. Dis-

tributed Representations of Tuples for Entity Resolution. PVLDB 11, 11 (2018), 1454–1467.
[20] Wenfei Fan, Zhe Fan, Chao Tian, and Xin Luna Dong. 2015. Keys for Graphs. PVLDB 8, 12 (2015), 1590–1601.
[21] Wenfei Fan, Wenzhi Fu, Ruochun Jin, Ping Lu, and Chao Tian. 2022. Discovering Association Rules from Big Graphs.

PVLDB 15, 7 (2022), 1479–1492.
[22] Wenfei Fan, Wenzhi Fu, Ruochin Jin, Ping Lu, and Chao Tian. 2023. Making It Tractable to Catch Duplicates and

Conflicts in Graphs. PACMMOD 1, 1 (2023), 86:1–86:28.
[23] Wenfei Fan, Hong Gao, Xibei Jia, Jianzhong Li, and Shuai Ma. 2011. Dynamic Constraints for Record Matching. VLDBJ

20, 4 (2011), 495–520.
[24] Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. 2008. Conditional Functional Dependencies for

Capturing Data Inconsistencies. TODS 33, 1 (2008), 6:1–6:48.
[25] Wenfei Fan, Tao He, Longbin Lai, Xue Li, Yong Li, Zhao Li, Zhengping Qian, Chao Tian, Lei Wang, Jingbo Xu, Youyang

Yao, Qiang Yin, Wenyuan Yu, Kai Zeng, Kun Zhao, Jingren Zhou, Diwen Zhu, and Rong Zhu. 2021. GraphScope: A
Unified Engine for Big Graph Processing. PVLDB 14, 12 (2021), 2879–2892.

[26] Wenfei Fan, Chunming Hu, Xueli Liu, and Ping Lu. 2020. Discovering Graph Functional Dependencies. TODS 45, 3
(2020), 15:1–15:42.

[27] Wenfei Fan, Ruochun Jin, Muyang Liu, Ping Lu, Chao Tian, and Jingren Zhou. 2020. Capturing Associations in Graphs.
PVLDB 13, 11 (2020), 1863–1876.

[28] Wenfei Fan, Ruochun Jin, Ping Lu, Chao Tian, and Ruiqi Xu. 2022. Towards Event Prediction in Temporal Graphs.
PVLDB 15, 9 (2022), 1861–1874.

[29] Wenfei Fan and Shuhao Liu. 2024. Fishing Fort: A System for Graph Analytics with ML Prediction and Logic
Deduction. In The Provenance of Elegance in Computation - Essays Dedicated to Val Tannen, Vol. 119. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 6:1–6:18.

[30] Wenfei Fan, Xueli Liu, Ping Lu, and Chao Tian. 2020. Catching Numeric Inconsistencies in Graphs. TODS 45, 2 (2020),
9:1–9:47.

[31] Wenfei Fan and Ping Lu. 2019. Dependencies for Graphs. TODS 44, 2 (2019), 5:1–5:40.
[32] Wenfei Fan, Ping Lu, Chao Tian, and Jingren Zhou. 2019. Deducing Certain Fixes to Graphs. PVLDB 12, 7 (2019),

752–765.
[33] Wenfei Fan, Kehan Pang, Ping Lu, and Chao Tian. 2025. Making It Tractable to to Detect and Correct Errors in Graphs.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 166. Publication date: June 2025.

https://shuhaoliu.github.io/assets/papers/wenchao-sigmod25-miniclean-full.pdf

166:26 Wenchao Bai, Wenfei Fan, Shuhao Liu, Kehan Pang, Xiaoke Zhu, and Jiahui Jin

TODS (2025), 16:1–16:75.
[34] Wenfei Fan, Yinghui Wu, and Jingbo Xu. 2016. Functional Dependencies for Graphs. In SIGMOD. 1843–1857.
[35] Wenfei Fan, Wenyuan Yu, Jingbo Xu, Jingren Zhou, XiaoJian Luo, Qiang Yin, Ping Lu, Yang Cao, and Ruiqi Xu. 2018.

Parallelizing Sequential Graph Computations. TODS 43, 18 (2018), 18:1–18:39.
[36] Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian Suchanek. 2013. AMIE: Association Rule Mining

under Incomplete Evidence in Ontological Knowledge Bases. In WWW. 413–422.
[37] Kun Gao, Katsumi Inoue, Yongzhi Cao, and Hanpin Wang. 2022. Learning First-Order Rules with Differentiable Logic

Program Semantics. In IJCAI. 3008–3014.
[38] Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. SimCSE: Simple Contrastive Learning of Sentence Embeddings. In

EMNLP. 6894–6910.
[39] Michael Garey and David Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H.

Freeman and Company.
[40] Congcong Ge, Yunjun Gao, Honghui Weng, Chong Zhang, Xiaoye Miao, and Baihua Zheng. 2020. KGClean: An

Embedding Powered Knowledge Graph Cleaning Framework. CoRR abs/2004.14478 (2020).
[41] Gurbinder Gill, Roshan Dathathri, Loc Hoang, Ramesh Peri, and Keshav Pingali. 2020. Single Machine Graph Analytics

on Massive Datasets Using Intel Optane DC Persistent Memory. PVLDB 13, 8 (2020), 1304–1318.
[42] Gösta Grahne and Alberto O Mendelzon. 1999. Tableau Techniques for Querying Information Sources Through Global

Schemas. In ICDT. 332–347.
[43] Wentian Guo, Yuchen Li, Mo Sha, Bingsheng He, Xiaokui Xiao, and Kian-Lee Tan. 2020. GPU-Accelerated Subgraph

Enumeration on Partitioned Graphs. In SIGMOD. 1067–1082.
[44] Jelle Hellings, Marc Gyssens, Jan Paredaens, and Yuqing Wu. 2016. Implication and Axiomatization of Functional and

Constant Constraints. AMAI 76, 3-4 (2016), 251–279.
[45] Lin Hu, Lei Zou, and M Tamer Özsu. 2023. GAMMA: A Graph Pattern Mining Framework for Large Graphs on GPU.

In ICDE. 273–286.
[46] Tomasz Imieliński and Witold Lipski Jr. 1984. Incomplete Information in Relational Databases. JACM 31, 4 (1984),

761–791.
[47] Paul Jaccard. 1901. Étude Comparative de la Distribution Florale dans une Portion des Alpes et des Jura. Bulletin de la

Société Vaudoise des Sciences Naturelles 37 (1901), 547–579.
[48] Kasra Jamshidi, Harry Xu, and Keval Vora. 2023. Accelerating Graph Mining Systems with Subgraph Morphing. In

EuroSys. 162–181.
[49] Tarun Kathuria and S Sudarshan. 2017. Efficient and Provable Multi-Query Optimization. In PODS. 53–67.
[50] Juno Kim and Steven Swanson. 2022. Blaze: Fast Graph Processing on Fast SSDs. In SC. 44:1–44:15.
[51] Aapo Kyrola, Guy E. Blelloch, and Carlos Guestrin. 2012. GraphChi: Large-Scale Graph Computation on Just a PC. In

OSDI. 31–46.
[52] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan. 2020. Deep Entity Matching with

Pre-Trained Language Models. PVLDB 14, 1 (2020), 50–60.
[53] Hang Liu and H Howie Huang. 2017. Graphene: Fine-Grained IOManagement for Graph Computing. In FAST. 285–300.
[54] Lingxiao Ma, Zhi Yang, Han Chen, Jilong Xue, and Yafei Dai. 2017. Garaph: Efficient GPU-Accelerated Graph Processing

on a Single Machine with Balanced Replication. In USENIX ATC. 195–207.
[55] Steffen Maass, Changwoo Min, Sanidhya Kashyap, Woon-Hak Kang, Mohan Kumar, and Taesoo Kim. 2017. Mosaic:

Processing a Trillion-Edge Graph on a Single Machine. In EuroSys. 527–543.
[56] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz

Czajkowski. 2010. Pregel: A System for Large-Scale Graph Processing. In SIGMOD. 135–146.
[57] Daniel Mawhirter, Sam Reinehr, Connor Holmes, Tongping Liu, and Bo Wu. 2021. GraphZero: A High-Performance

Subgraph Matching System. SIGOPS Operation Systems Review 55, 1 (2021), 21–37.
[58] Daniel Mawhirter and Bo Wu. 2019. Automine: Harmonizing High-Level Abstraction and High Performance for Graph

Mining. In SOSP. 509–523.
[59] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt Tolton, and Theo Vassilakis.

2010. Dremel: Interactive Analysis of Web-Scale Datasets. PVLDB 3, 1-2 (2010), 330–339.
[60] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. 2017. Regularizing and Optimizing LSTM Language Models.

arXiv preprint arXiv:1708.02182 (2017).
[61] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park, Ganesh Krishnan, Rohit Deep,

Esteban Arcaute, and Vijay Raghavendra. 2018. Deep Learning for Entity Matching: A Design Space Exploration. In
SIGMOD. 19–34.

[62] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A Lightweight Infrastructure for Graph Analytics. In
SOSP. 456–471.

[63] Stefano Ortona, Venkata Vamsikrishna Meduri, and Paolo Papotti. 2018. Robust Discovery of Positive and Negative

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 166. Publication date: June 2025.

Rule-Based Graph Cleaning with GPUs on a Single Machine 166:27

Rules in Knowledge Bases. In ICDE. 1168–1179.
[64] Rose Oughtred, Jennifer Rust, Christie Chang, Bobby-Joe Breitkreutz, Chris Stark, Andrew Willems, Lorrie Boucher,

Genie Leung, Nadine Kolas, Frederick Zhang, SonamDolma, Jasmin Coulombe-Huntington, Andrew Chatr-Aryamontri,
Kara Dolinski, and Mike Tyers. 2021. The BioGRID Database: A Comprehensive Biomedical Resource of Curated
Protein, Genetic, and Chemical Interactions. Protein Science 30, 1 (2021), 187–200.

[65] Yeonsu Park, Seongyun Ko, Sourav S Bhowmick, Kyoungmin Kim, Kijae Hong, and Wook-Shin Han. 2020. G-CARE: A
Framework for Performance Benchmarking of Cardinality Estimation Techniques for Subgraph Matching. In SIGMOD.
1099–1114.

[66] Meng Qu, Junkun Chen, Louis-Pascal A. C. Xhonneux, Yoshua Bengio, and Jian Tang. 2021. RNNLogic: Learning Logic
Rules for Reasoning on Knowledge Graphs. In ICLR.

[67] Xuguang Ren and Junhu Wang. 2016. Multi-Query Optimization for Subgraph Isomorphism Search. PVLDB 10, 3
(2016), 121–132.

[68] Amitabha Roy, Ivo Mihailovic, andWilly Zwaenepoel. 2013. X-Stream: Edge-Centric Graph Processing Using Streaming
Partitions. In SOSP. 472–488.

[69] Prasan Roy and S. Sudarshan. 2018. Multi-Query Optimization. In Encyclopedia of Database Systems, Second Edition.
Springer, 2425–2429.

[70] Tianhui Shi, Jidong Zhai, Haojie Wang, Qiqian Chen, Mingshu Zhai, Zixu Hao, Haoyu Yang, and Wenguang Chen.
2023. GraphSet: High Performance Graph Mining through Equivalent Set Transformations. In SC. 32:1–32:14.

[71] Julian Shun and Guy E. Blelloch. 2013. Ligra: A Lightweight Graph Processing Framework for Shared Memory. In
SIGPLAN. 135–146.

[72] Jaclyn Smith, Michael Benedikt, Milos Nikolic, and Amir Shaikhha. 2020. Scalable Querying of Nested Data. PVLDB
14, 3 (2020), 445–457.

[73] Dan Suciu, Dan Olteanu, Christopher Ré, and Christopher Ellis Koch. 2011. Probabilistic Databases. Synthesis Lectures
on Data Management 3 (2011), 1–180.

[74] Xibo Sun and Qiong Luo. 2023. Efficient GPU-Accelerated Subgraph Matching. PACMMOD 1, 2 (2023), 181:1–181:26.
[75] Thomas Pellissier Tanon and Fabian M. Suchanek. 2021. Neural Knowledge Base Repairs. In ESWC.
[76] Keval Vora, Guoqing Xu, and Rajiv Gupta. 2016. Load the Edges You Need: A Generic I/O Optimization for Disk-based

Graph Processing. In USENIX ATC. 507–522.
[77] Tian Wang, Haoxiong Ke, Xi Zheng, Kun Wang, Arun Kumar Sangaiah, and Anfeng Liu. 2020. Big Data Cleaning

Based on Mobile Edge Computing in Industrial Sensor-Cloud. TII 16, 2 (2020), 1321–1329.
[78] Zhiyi Wang and Shimin Chen. 2017. Exploiting Common Patterns for Tree-Structured Data. In SIGMOD. 883–896.
[79] Yihua Wei and Peng Jiang. 2022. STMatch: Accelerating Graph Pattern Matching on GPU with Stack-Based Loop

Optimizations. In SC. 53:1–53:13.
[80] Lizhi Xiang, Arif Khan, Edoardo Serra, Mahantesh Halappanavar, and Aravind Sukumaran-Rajam. 2021. cuTS: Scaling

Subgraph Isomorphism on Distributed Multi-GPU Systems Using Trie Based Data Structure. In SC. 69:1–69:14.
[81] Li Zeng, Lei Zou, and M Tamer Özsu. 2022. SGSI–A Scalable GPU-friendly Subgraph Isomorphism Algorithm. TKDE

(2022), 11899–11916.
[82] Li Zeng, Lei Zou, M Tamer Özsu, Lin Hu, and Fan Zhang. 2020. GSI: GPU-Friendly Subgraph Isomorphism. In ICDE.

1249–1260.
[83] Kaiyuan Zhang, Rong Chen, and Haibo Chen. 2015. NUMA-Aware Graph-Structured Analytics. In PPoPP. 183–193.
[84] Qinggang Zhang, Junnan Dong, Keyu Duan, Xiao Huang, Yezi Liu, and Linchuan Xu. 2022. Contrastive Knowledge

Graph Error Detection. In CIKM. 2590–2599.
[85] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun, and Saman Amarasinghe. 2018. GraphIt:

A High-Performance Graph DSL. OOPSLA 2 (2018), 1–30.
[86] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogelstein, Carey E Priebe, and Alexander S Szalay. 2015. FlashGraph:

Processing Billion-Node Graphs on an Array of Commodity SSDs. In FAST. 45–58.
[87] Xiangyu Zhi, Xiao Yan, Bo Tang, Ziyao Yin, Yanchao Zhu, and Minqi Zhou. 2023. CoroGraph: Bridging Cache Efficiency

and Work Efficiency for Graph Algorithm Execution. PVLDB 17, 4 (2023), 891–903.
[88] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph: Large-Scale Graph Processing on a Single Machine

Using 2-Level Hierarchical Partitioning. In USENIX ATC. 375–386.
[89] Xiaoke Zhu, Yang Liu, Shuhao Liu, and Wenfei Fan. 2023. MiniGraph: Querying Big Graphs with a Single Machine.

PVLDB 16, 9 (2023), 2172–2185.
[90] Xiaoke Zhu, Min Xie, Ting Deng, and Qi Zhang. 2025. HyperBlocker: Accelerating Rule-based Blocking in Entity

Resolution using GPUs. PVLDB 18, 2 (2025), 308–321.

Received October 2024; revised January 2025; accepted February 2025

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 166. Publication date: June 2025.

	Abstract
	1 Introduction
	2 Graph Cleaning with GCRs
	2.1 Preliminaries
	2.2 Graph Cleaning Rules
	2.3 Parallel Graph Cleaning with GCRs

	3 MiniClean: A Single Machine System
	4 Optimizing Star Matching
	4.1 Bundled Processing
	4.2 Star Candidate Compression
	4.3 Balancing CPU and GPU Workloads

	5 Hybrid Parallel Model
	5.1 Multi-mode parallelism
	5.2 A Scheduling Strategy

	6 Experimental Study
	6.1 Graph Cleaning Datasets
	6.2 Experimental Evaluation

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

