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ABSTRACT
This paper studies rule-based blocking in Entity Resolution (ER).
We propose HyperBlocker, a GPU-accelerated system for blocking
in ER. As opposed to previous blocking algorithms and parallel
blocking solvers, HyperBlocker employs a pipelined architecture
to overlap data transfer and GPU operations. It generates a data-
aware and rule-aware execution plan on CPUs, for specifying how
rules are evaluated, and develops a number of hardware-aware
optimizations to achieve massive parallelism on GPUs.

Using real-life datasets, we show that HyperBlocker is at least
6.8× and 9.1× faster than prior CPU-powered distributed systems
and GPU-based ER solvers, respectively. Better still, by combining
HyperBlocker with the state-of-the-art ER matcher, we can speed
up the overall ER process by at least 30% with comparable accuracy.
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1 INTRODUCTION
Entity resolution (ER), also known as record linkage, data dedupli-
cation, merge/purge and record matching, is to identify tuples that
refer to the same real-world entity. It is a routine operation in many
data cleaning and integration tasks, such as detecting duplicate
commodities [34] and finding duplicate customers [22].

Recently, with the rising popularity of deep learning (DL) mod-
els, research efforts have been made to apply DL techniques to
ER. Although these DL-based approaches have shown impressive
accuracy, they also come with high training/inference costs, due
to the large number of parameters. Despite the effort to reduce
parameters, the growth in the size of DL models is still an inevitable
trend, leading to the increasing time for making matching decisions.

In the worst case, ER solutions have to spend quadratic time ex-
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Figure 1: DL-based blocking vs. rule-based blocking

amining all pairs of tuples. As reported by Thomson Reuters, an ER
project can take 3-6 months, mainly due to the scale of data [20]. To
accelerate, most ER solutions divide ER into two phases: (a) a block-
ing phase, where a blocker discards unqualified pairs that are guar-
anteed to refer to distinct entities, and (b) a matching phase, where
a matcher compares the remaining pairs to finally decide whether
they arematched, i.e., refer to the same entity. The blocking phase is
particularly useful when dealing with large data and “is the crucial
part of ER with respect to time efficiency and scalability” [65].

To cope with the volume of big data, considerable research has
been conducted on blocking techniques. As surveyed in [50, 65], we
can divide blocking methods into rule-based [20, 35, 39, 44, 64] or
DL-based [24, 40, 77, 79], both have their strengths and limitations.

DL-based blocking methods typically utilize pre-trained DL mod-
els to generate embeddings for tuples and discard tuple pairs with
low similarity scores. While DL-based blocking can enhance ER by
parallelizing computation and leveraging GPU acceleration [42], it
often comes with long runtime and high memory costs. To justify
this, we conducted a detailed analysis on DeepBlocker [77], the
state-of-the-art (SOTA) DL-based blocker in Figure 1. We picked a
rule-based blocker (a prototype of our method) with comparable ac-
curacy withDeepBlocker and compared their runtime and memory.
The evaluation was conducted on a machine equipped with V100
GPUs using the Songs dataset [59], varying the number of tuples.
When running on one GPU, the runtime of DeepBlocker increases
substantially when the number of tuples exceeds 40k. Worse still,
it consumes excessive memory due to the large embeddings and
intermediate results during similarity computation. Although the
runtime of DeepBlocker can be reduced by using more GPUs, the
issue remains, e.g., even with four GPUs in Figure 1(a),DeepBlocker
is still slower than the rule-based blocker that runs on one GPU.

In contrast, rule-based blocking methods demonstrate potential
for achieving scalability by leveraging multiple blocking rules. Each
rule employs various comparisons with logical operators such as
AND, OR, and NOT to discard unqualified tuple pairs. For instance,
a blocking rule for books may state “If titles match and the number
of pages match, then the two books match” [46]. We refer to the
comparisons in this rule as equality comparisons, as they require
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exact equality. Another example, referred to as similarity compar-
isons, is presented in [64], which adopts the Jaccard similarity to
determine whether a pair of tuples requires further matching. Rule-
based approaches complement DL-based approaches by providing
flexibility, explainability, and scalability in the blocking process [19].
Moreover, by incorporating domain knowledge into blocking rules,
these approaches can readily adapt to different domains.

Example 1: As a critical step for data consistency, an e-commerce
company (e.g., Amazon [5]) conducts ER for products, to enhance
operations for e.g., product listings and inventory management.

To identify duplicate products, the blocking rule 𝜑1 may fit.
𝜑1: Two products are potentially matched if (a) they have same color
and price, (b) they are sold at same store, (c) their names are similar.

Here 𝜑1 is a conjunction of attribute-wise comparisons, where
both equality (parts (a) and (b)) and similarity comparisons (part
(c)) are involved. In Section 2, we will formally define 𝜑1. □

Rule-based blocking in ER has attracted a lot of attention (sur-
veyed in [50, 65]). However, most existing rule-based blockers are
designed for CPU-based (shared nothing) architectures, leading to
unsatisfactory performance. Typically, a blocker conducts pairwise
comparisons on all pairs of tuples to obtain candidate matches (Fig-
ure 2(a)). In a shared-nothing architecture, data is partitioned and
spread across a set of processing units. Each unit independently
blocks data using its local memory, which may lead to skewed
partitions/computations and rising communication costs, e.g., in
Figure 2(c), the first unit is assignedmore tuples than the second one
and worse still, two tuples that both refer to entity 1 are distributed
to different partitions. To avoid missing this match, the second unit
has to visit its local memory (Stp. 1) and transfer its data to the first
unit (Stp. 2). Then the first unit buffers the data (Stp. 3) and finally,
conducts comparison locally (Stp. 4 & 5). The shared memory archi-
tecture (Figure 2(b)) is the opposite: all data is accessible from all pro-
cessing units, allowing for efficient data sharing, collaboration be-
tween processing units and dynamic workload scheduling, e.g., the
two tuples referred to entity 1 can be directly accessed by both units
in Figure 2(b) (Stp. 1 & 2). GPUs are typically based on shared mem-
ory architectures, offering promising opportunities to achieve block-
ing parallelism. However, unlike DL-based approaches, few rule-
based methods support the massive parallelism offered by GPUs,
despite their greater potential in parallel scalability (see Figure 1).

To make practical use of rule-based blocking, several questions
have to be answered. Can we parallelize it under a share memory
architecture, utilizingmassive parallelism of a GPU? Canwe explore
characteristics of GPUs and CPUs, to effectively collaborate them?
HyperBlocker. To answer these, we developHyperBlocker, a GPU-
accelerated system for rule-based blocking in Entity Resolution. As

proof of concept, we adopt matching dependencies (MDs) [27] for
rule-based blocking. As a class of rules developed for record match-
ing, MDs are defined as a conjunction of (similarity) predicates
and support both equality and similarity comparisons. Compared
with prior works, HyperBlocker has the following unique features.

(1) A pipelined architecture. HyperBlocker adopts an architecture
that pipelines the memory access from/to CPUs for data transfer,
and operations on GPUs for rule-based blocking. In this way, the
data transfer and the computation on GPUs can be overlapped.

(2) Execution plan on CPUs. To effectively filter unqualified pairs,
blocking must be optimized for the underlying data (resp. blocking
rules) for both equality and similarity comparisons; in this case, we
say that the blocking is data-aware (resp. rule-aware). To our knowl-
edge, prior methods either fail to consider data/rule-awareness or
cannot handle arbitrary comparisonswell.HyperBlocker designs an
execution plan generator to warrant efficient rule-based blocking.

(3) Hardware-aware parallelism on GPUs. Due to different charac-
teristics of CPUs and GPUs, a naive approach that applies existing
CPU-based blocking on GPUs makes substantial processing ca-
pacity untapped. We develop a variety of GPU-based parallelism
strategies, designated for rule-based blocking, by exploiting the
hardware characteristics of GPUs, to achieve massive parallelism.

(4) Multi-GPUs collaboration. It is already hard to offload tasks on
CPUs. This problem is even exacerbated under multi-GPUs, due to
the complexities of task decomposition, (inter-GPU) resource man-
agement, and workload balancing. HyperBlocker provides effective
partitioning and scheduling strategies to scale with multiple GPUs.

Contribution& organization.After reviewing background in Sec-
tion 2, we present HyperBlocker as follows: (1) its unique architec-
ture and system overview (Section 3); (2) the rule/data-aware execu-
tion plan generator (Section 4); (3) the hardware-aware parallelism
and the task scheduling strategy across GPUs (Section 5); and (4)
an experimental study (Section 6). Section 7 presents related work.

Using real-life datasets, we find the following: (a) HyperBlocker
speedups prior distributed blocking systems and GPU baselines by
at least 6.8× and 9.1×, respectively. (b) Combining HyperBlocker
with the SOTA ER matcher saves at least 30% time with comprable
accuracy. (c)HyperBlocker is scalable, e.g., it can process 36M tuples
in 1604s. (d) While promising, DL-based blocking methods are not
always the best. By carefully optimizing rule-based blocking on
GPUs, we share valuable lessons/insights about when rule-based
approaches can beat the DL-based ones and vice versa.

2 PRELIMINARIES
We first review the notations for ER, blocking, and the GPU.

Relations. Consider a schema 𝑅 = (eid, 𝐴1, . . . , 𝐴𝑛), where𝐴𝑖 is an
attribute (𝑖 ∈ [1, 𝑛]), and eid is an entity id, such that each tuple of 𝑅
represents an entity. A relation 𝐷 of 𝑅 is a set of tuples of schema 𝑅.

Entity resolution (ER). Given a relation 𝐷 , ER is to identify all
tuple pairs in 𝐷 that refer to the same real-life entity. It returns a
set of tuple pairs (𝑡1, 𝑡2) of 𝐷 that are identified as matches. If 𝑡1
does not match 𝑡2, (𝑡1, 𝑡2) is referred to as a mismatch.

Most existing methods typically conduct ER in three steps:



Table 1: A relation 𝐷 of schema Products, where the dash (“-”) denotes a missing value.
eid pno pname price sname description color saddress
𝑒1 𝑡1 Apple Mac Air $909 Comp. World Apple MacBook Air (13-inch, 8GB RAM, 256GB SSD) Gray 9 Barton Grove, McCulloughmouth
𝑒2 𝑡2 ThinkPad - Smith’s Tech ThinkPad E15, 15.6-inch full HD IPS display, Intel Core i5-1235U processor, (16GB) RAM | 512GB PCIe SSD) Gray Seg Plaza, Hua qiang North Road
𝑒2 𝑡3 ThinkPad $849 Smith’s Tech Lenovo E15 Business ThinkPad, 15.6-inch full HD IPS display, 12 generation Intel Core i5, 16GB RAM, 512GB SSD Gray Seg Plaza, Hua qiang North Road
𝑒1 𝑡4 MacBook Air $909 Comp. World Apple 2022 MacBook Air M2 chip 13-inch,8 GB RAM,256 GB SSD storage gray Gray -
𝑒1 𝑡5 MacBook Air $909 Comp. World - Gray Barton Grove, McCulloughmouth

(1) Data partitioning. The tuples in relation 𝐷 are divided into mul-
tiple data partitions, namely 𝑃1, 𝑃2, ..., 𝑃𝑚 , so that tuples of similar
entities tend to be put into the same data partition.

(2) Blocking. Each tuple pair (𝑡1, 𝑡2) from a partition 𝑃 is a potential
match that requires further verification. To reduce cost, a blocking
methodAblock (i.e., blocker) is often adopted to filter out those pairs
that are definitely mismatches efficiently, instead of directly verify-
ing every tuple pair. Denote the set of remaining pairs obtained from
𝑃 by Ca(𝑃) = {(𝑡1, 𝑡2) ∈ 𝑃 × 𝑃 | (𝑡1, 𝑡2) is not filtered by Ablock}.
(3) Matching. For each pair in Ca(𝑃), an accurate (but expensive)
matcher is applied, to make final decisions of matches/mismatches.
Our scope: blocking. Note that in some works, both steps (1) and
(2) are called blocking. To avoid ambiguity, we follow [77] and distin-
guish partitioning from blocking. We mainly focus on blocking, i.e.,
◦ Input: A relation 𝐷 of the tuples of schema 𝑅, where the tuples

in 𝐷 are divided into𝑚 partitions 𝑃1, . . . , 𝑃𝑚 .
◦ Output: The set Ca(𝑃𝑖 ) of candidate tuple pairs on each 𝑃𝑖 .

Although our work can be applied on data partitions generated
by any existing method, we optimize over multiple data partitions,
by exploiting designated GPU acceleration techniques (Section 5.3).

While blocking focuses more on efficiency and matching focuses
more on accuracy, they can be used without each other, e.g., one can
directly employ rules [27] for ER or apply an ER matcher [51] on
the Cartesian product of the entire partition. When blocking is used
alone on a given partition 𝑃 , all tuple pairs inCa(𝑃) are identified as
matches. In Section 6, we will test HyperBlocker with or without a
matcher, to elaborate the trade-off between efficiency and accuracy.

Rule-based blocking. We study rule-based blocking in this paper,
due to its efficiency and explainability remarked earlier.We review a
class of matching dependencies (MDs), originally proposed in [27].

Predicates. Predicates over schema 𝑅 are defined as follows:
𝑝 ::= 𝑡 .𝐴 = 𝑐 | 𝑡 .𝐴 = 𝑠 .𝐵 | 𝑡 .𝐴 ≈ 𝑠 .𝐵

where 𝑡 and 𝑠 are tuple variables denoting tuples of 𝑅, 𝐴 and 𝐵 are
attributes of 𝑅 and 𝑐 is a constant; 𝑡 .𝐴 = 𝑠 .𝐵 and 𝑡 .𝐴 = 𝑐 compare
the equality on compatible values, e.g., 𝑡 .eid = 𝑠 .eid says that (𝑡, 𝑠) is
a potential match; 𝑡 .𝐴 ≈ 𝑠 .𝐵 compares the similarity of 𝑡 .𝐴 and 𝑠 .𝐵.
Here any similarity measure, symmetric or asymmetric, can be used
as ≈, e.g., edit distance or KL divergence, such that 𝑡 .𝐴 ≈ 𝑠 .𝐵 is true
if 𝑡 .𝐴 and 𝑠 .𝐵 are “similar” enough w.r.t. a threshold. Sophisticated
similarity measures like ML models can also be used as in [18, 28].

Rules. A (bi-variable) matching dependency (MD) over 𝑅 is:
𝜑 = 𝑋 → 𝑙,

where 𝑋 is a conjunction of predicates over 𝑅 with two tuple vari-
ables 𝑡 and 𝑠 , and 𝑙 is 𝑡 .eid = 𝑠 .eid. We refer to 𝑋 as the precondition
of 𝜑 , and 𝑙 as the consequence of 𝜑 , respectively.

Example 2: Consider a (simplified) e-commence database with self-

explained schema Products (eid, pno, pname, price, sname (store
name), description, color, saddress (store address)). Below are some
examplesMDs, where the rule in Example 1 is written as 𝜑1.

(1) 𝜑1 : 𝑡 .color = 𝑠 .color ∧ 𝑡 .price = 𝑠 .price ∧ 𝑡 .sname = 𝑠 .sname
∧ 𝑡 .pname ≈ED 𝑠 .pname → 𝑡 .eid = 𝑠 .eid, where ≈ED measures
the edit distance. As stated before, 𝜑1 identifies two products, by
their colors, prices, product names and the stores sold.

(2) 𝜑2 : 𝑡 .sname = 𝑠 .sname ∧ 𝑡 .description ≈JD 𝑠 .description →
𝑡 .eid = 𝑠 .eid, where ≈JD measures the Jaccard distance. The MD
says that if two products are sold in the store and have a similar
description, then they are identified as a potential match.

(3)𝜑3 : 𝑡 .saddress ≈ED 𝑠 .saddress∧𝑡 .description ≈JD 𝑠 .description
→ 𝑡 .eid = 𝑠 .eid. It gives another condition for identifying two
products, i.e., the two products with similar descriptions sold from
stores with similar addresses are potentially matched. □

Semantics. A valuation of tuple variables of anMD𝜑 in𝐷 , or simply
a valuation of 𝜑 , is a mapping ℎ that instantiates the two variables
𝑡 and 𝑠 with tuples in 𝐷 . A valuation ℎ satisfies a predicate 𝑝 over
𝑅, written as ℎ |= 𝑝 , if the following is satisfied: (1) if 𝑝 is 𝑡 .𝐴 = 𝑐

or 𝑡 .𝐴 = 𝑠 .𝐵, then it is interpreted as in tuple relational calculus
following the standard semantics of first-order logic [15]; and (2) if 𝑝
is 𝑡 .𝐴 ≈ 𝑠 .𝐵, then ℎ(𝑡).𝐴 ≈ ℎ(𝑠).𝐵 returns true. Given a conjunction
𝑋 of predicates, we say ℎ |= 𝑋 if for all predicates 𝑝 in 𝑋 , ℎ |= 𝑝 .
Blocking. Rule-based blocking employs a set Δ ofMDs. Given a par-
tition 𝑃 , a pair (𝑡1, 𝑡2) ∈ 𝑃 × 𝑃 is in Ca(𝑃) iff there exists an MD 𝜑

in Δ such that the valuation ℎ(𝑡1, 𝑡2) of 𝜑 that instantiates variables
𝑡 and 𝑠 with tuples 𝑡1 and 𝑡2 satisfies the precondition of 𝜑 ; we call
such𝜑 as awitness at (𝑡1, 𝑡2), since it indicates that (𝑡1, 𝑡2) is a poten-
tial match. Otherwise, (𝑡1, 𝑡2) will be filtered. Since a precondition is
a conjunction of predicates, rule-based blocking is inDisjunctive nor-
mal form (DNF), i.e., it is to evaluate a disjunction of conjunctions.

Example 3: Continuing with Example 2, consider 𝐷 in Table 1 and
ℎ(𝑡1, 𝑡4) that instantiates variables 𝑡 and 𝑠 with tuples 𝑡1 and 𝑡4 in
𝐷 . Since ℎ(𝑡1, 𝑡4) satisfies the precondition of 𝜑1, 𝜑1 is a witness at
(𝑡1, 𝑡4). Similarly, one can verify that𝜑1 is not awitness at (𝑡2, 𝑡3). □

Discovery of MDs.MDs can be considered as a special case of entity
enhancing rules (REEs) [28, 29]. We can readily apply the discovery
algorithms forREEs, e.g., [28, 29], to discoverMDs (details omitted).

GPU hardware. As general processors for high-performance com-
putation, GPUs offer the following benefits compared with CPUs.

First, GPUs provide massive parallelism by programming with
CUDA (Compute Unified Device Architecture) [54]. A GPU has
multiple SMs (Streaming Multiprocessors), where each SM accom-
modates multiple processing units. e.g., V100 has 80 SMs, each with
64 CUDA cores. SMs handle the parallel execution of CUDA cores. In
CUDA programming, CUDA cores are conceptually organized into



TBs (Thread Blocks) and physically grouped into thread warps, each
comprising subgroups of 32 threads. This hierarchical organization
allows thousands of threads running simultaneously on GPUs.

Second, GPUs utilize the DMA (Direct Memory Access) tech-
nology, which enables direct data transfer between GPU memory
and system memory. This not only reduces CPU overhead but also
allows the GPU to handle multiple data streams simultaneously.
However, the number of PCIe lanes determines the maximum num-
ber of streams that can transfer data simultaneously (e.g., 16 PCIe
lanes for V100). When multiple partitions perform data transfers
over a PCIe lane, only one can utilize the lane at a time.

Third, GPUs adopt SIMT (Single Instruction, Multiple Threads)
execution, where each SIMT lane is an individual unit that is re-
sponsible for executing a thread under a single instruction. Thread
divergence can adversely affect the performance and it typically oc-
curs in conditional statements (e.g., if-else), where some lanes take
one execution path while the others take a different path. However,
GPUs must execute different execution paths sequentially, rather
than in parallel, resulting in underutilization of GPU resources.

3 HYPERBLOCKER: SYSTEM OVERVIEW
In this section, we present the overview of HyperBlocker, a GPU-
accelerated system for rule-based blocking that optimizes the effi-
ciency by considering rules, underlying data, and hardware simul-
taneously. In the literature, GPUs and CPUs are usually referred to
as devices and hosts, respectively. We also follow this terminology.
Challenges. Existing parallel blocking methods typically rely on
multiple CPU-powered machines under the shared nothing archi-
tecture, to achieve data partition-based parallelism. They reduce the
runtime by using more machines, which, however, is not always fea-
sible due to, e.g., the increasing communication cost (see Section 1).

In light of these, HyperBlocker focuses on parallel blocking un-
der a shared memory architecture; this introduces new challenges.
(1) Execution plan for efficient blocking. The efficiency of blocking
depends heavily on howmuch/fast we can filter mismatches. There-
fore, a good execution plan that specifies how rules are evaluated is
crucial. However, most existing blocking optimizers fail to consider
the properties of rules/data for blocking and even the optimizers
of popular DBMS (e.g., PostgreSQL [11]) may not work well when
handling similarity comparisons and evaluating queries in DNF (see
Section 4). This motivates us to design a different plan generator.
(2) Hardware-aware parallelism. When GPUs are involved, those
CPU-based techniques adopted in existing solvers no longer suffice,
since GPUs have radically different characteristics (Section 2). Novel
GPU-based parallelism for blocking is required to improve GPU uti-
lization, e.g., by reducing thread wait stalls and thread divergence.
(3) Multi-GPUs collaboration. Existing parallel blocking solvers fo-
cus on minimizing the communication cost across all workers [20,
22]. However, this objective no longer applies in multi-GPUs sce-
narios, where unique challenges such as task decomposition, (inter-
GPU) resource management and task scheduling arise.
Novelty. The ultimate goal of HyperBlocker is to generate the set
Ca(𝑃) of potential matches on each data partition 𝑃 . To achieve
this, we implement three novel components as follows:
(1) Execution plan generator (EPG) (Section 4).We develop a gener-
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ator to generate data-aware and rule-aware execution plans, which
support arbitrary comparisons and work well with DNF evaluation.
Here we say an execution plan is data-aware, since it considers the
distribution of data to decide which predicates are evaluated first;
similarly, it is rule-aware, since it is optimized for underlying rules.
(2) Parallelism optimizer (Section 5).We implement a specialized op-
timizer that exploits the hierarchical structure of GPUs, to optimize
the power of GPUs by utilizing thread blocks (TBs) and warps. With
this optimizer, blocking can be effectively parallelized on GPUs.
(3) Resource scheduler (Section 5). To achieve optimal performance
overmultiple GPUs, a partitioning strategy and a resource scheduler
are developed to manage the resources, and balance the workload
across multiple GPUs, minimizing idle time and resource waste.
Architecture. The architecture of HyperBlocker is shown in
Figure 3. Taken a relation𝐷 of tuples and a set Δ ofMDs discovered
offline as input,HyperBlocker divides the tuples in𝐷 into𝑚 disjoint
partitions and asynchronously processes partitions in a pipelined
manner, so that the execution at devices and the data transfer can
be overlapped, mitigating the excessive data transfer costs.
Workflow. More specifically, HyperBlocker works in five steps:

(1) Data partitioning. HyperBlocker divides the tuples in 𝐷 into𝑚
partitions, to allow parallel processing asynchronously.
(2) Execution plan generation. Given the set Δ of MDs discovered
offline, an execution plan that specifies in what order the rules (and
the predicates in rules) should be evaluated is generated at the host.
(3)Host scheduling. The blocking on each partition forms a computa-
tional task and the host dynamically assigns tasks to the queue(s) of
available devices without interrupting their ongoing execution, min-
imizing the idle time of devices and improving resource utilization.
(4)Device execution.When a device receives the task assigned, it con-
ducts the rule-based blocking on the corresponding data partition,
following the execution plan generated in Step (2).
(5) Result retrieval. Once a task is completed on a device, the host
will pull/collect the result (i.e., Ca(𝑃)) from the device.

To facilitate processing,HyperBlocker has two additional compo-
nents: HostProducer and HostReceiver, where the former manages
Steps (1), (2), and (3) and the latter handles Step (5). Steps (3) (4) (5)
in HyperBlocker work asynchronously in a pipeline manner.

4 EPG: EXECUTION PLAN GENERATOR
Given the set Δ ofMDs and a partition 𝑃 of 𝐷 , a naive approach to
compute Ca(𝑃) is to evaluate each MD in Δ for all pairs in 𝑃 . That



is, to decide whether (𝑡1, 𝑡2) is in Ca(𝑃), we perform 𝑂 (∑︁𝜑∈Δ |𝜑 |)
predicate evaluation, where |𝜑 | is the number of predicates in 𝜑 .
Worse still, there are 𝑂 ( |Δ|!|𝜑 |!) possible ways to evaluate all MDs
in Δ, since bothMDs in Δ and predicates in each 𝜑 can be evaluated
in arbitrary orders. However, not all orders are equally efficient.

Example 4: In Example 3, 𝜑1 is a witness at (𝑡1, 𝑡4) while 𝜑3 is not.
If we first evaluate 𝜑1 for (𝑡1, 𝑡4), (𝑡1, 𝑡4) is identified as a potential
match and there is no need to evaluate 𝜑3. Moreover, when eval-
uating 𝜑1 for another pair (𝑡2, 𝑡3), we can conclude that 𝜑1 is not a
witness at (𝑡2, 𝑡3), as soon as we findℎ(𝑡2, 𝑡3) ̸|= 𝑡 .price = 𝑠 .price. □

Challenges. Given the huge number of possible evaluation orders,
it is non-trivial to define a good one, for three reasons:

(1) Rule priority. Recall that rule-based blocking is in DNF, i.e., as
long as there exists a witness at (𝑡1, 𝑡2), (𝑡1, 𝑡2) will be considered
as a potential match. This motivates us to prioritize the rules in
Δ so that promising ones can be evaluated early; once a witness
is found, the evaluation of the remaining rules can be skipped.
(2) Reusing computation. MDs may have common predicates. To
avoid evaluating a predicate repeatedly, we reuse previous results
whenever possible, e.g., given (𝑡1, 𝑡2),𝜑1 : 𝑝∧𝑋1 → 𝑙 and𝜑2 : 𝑝∧𝑋2
→ 𝑙 , if 𝜑1 is not a witness at (𝑡1, 𝑡2) since ℎ(𝑡1, 𝑡2) ̸|= 𝑝 , neither is 𝜑2.
(3) Predicate ordering. Given (𝑡1, 𝑡2) and 𝜑 : 𝑋 → 𝑙 , 𝜑 is not a
witness at (𝑡1, 𝑡2) if we find the first 𝑝 in 𝑋 such that ℎ(𝑡1, 𝑡2) ̸|= 𝑝 .
However, to decide which predicate is evaluated first, we have to
consider both its evaluation cost and its effectiveness/selectivity.

As remarked in [18, 30], blocking with a set ofMDs can be im-
plemented in a single DNF SQL query (i.e., an OR of ANDs), where
similarity predicates in MDs are re-written as user-defined func-
tions (UFDs). In light of this, one may want to adopt the optimizers
of existing DBMS to tackle rule-based blocking, which, however,
may not work well, for several reasons. (a) Themixture of relational
operators and UDFs poses serious challenges to an optimizer [67].
It may lack “the information needed to decide whether they can be
reordered with relational operators and other UDFs” [37] and worse
still, it is hard to accurately estimate the runtime performance of
UDFs [67]. (b) Using OR operators in WHERE clauses can be ineffi-
cient, since it can force the database to perform a full table scan to
find matching tuples [6]. (c) Similar to [52], if a tuple pair fails to
satisfy prior predicates in a blocking rule, the remaining evalua-
tion of this rule can be bypassed directly. While this is undeniably
obvious, “many approaches have not leveraged it effectively” [52].

Novelty. In light of these, EPG inHyperBlocker gives a lightweight
solution, by generating an execution plan to make the overall eval-
uation cost of Δ as small as possible. Its novelty includes (a) a new
notion of execution tree that works no matter what types of com-
parisons are used, (b) a rule-aware scoring strategy, to decide which
MDs inΔ are evaluated first, and (c) a data-aware predicate ordering
scheme, to strike for a balance between cost and effectiveness.

Below we first give the formal definition of execution plans and
then show how EPG generates a good execution plan.

4.1 Execution plan
An execution plan specifies how rules and predicates in Δ are eval-
uated. Although an execution plan can be represented in different

ways, we represent it as an execution tree, denoted byT in this paper
for its conciseness and simplicity (an example is given in Figure 4,
to be explained in more detail later). (1) A node in T is denoted by
𝑁 , where the root is denoted by 𝑁0. (2) A path 𝜌 from the root is
a list 𝜌 = (𝑁0, 𝑁1, . . . , 𝑁𝐿) such that (𝑁𝑖−1, 𝑁𝑖 ) is an edge of T for
𝑖 ∈ [1, 𝐿]; the length of 𝜌 is 𝐿, i.e., the number of edges on 𝜌 . (3) We
refer to 𝑁2 as a child node of 𝑁1 if (𝑁1, 𝑁2) is an edge in T , and as a
descendant of 𝑁1 if there exists a path from 𝑁1 to 𝑁2; conversely, we
refer to 𝑁1 as a parent node (resp. predecessor) of 𝑁2. (4) Each edge
𝑒 represents a predicate 𝑝 and is associated with a score, denoted by
score(𝑒), indicating the priority of 𝑒 . (5) A node is called a leaf if it
has no children and T has |Δ| leaves, where each leaf is associated
with a rule𝜑 : 𝑋 → 𝑙 inΔ; the length of the path from the root to the
leaf is |𝑋 | (i.e., the number of predicates in𝑋 ) and for each predicate
in𝑋 , it appears exactly once in an edge on the path. (6) The leaves of
two MDs may have common predecessors, in addition to the root;
intuitively, this means that theMDs have common predicates. With
a slight abuse of notation, we also denote an execution plan by T .

Evaluating an execution plan. For each pair (𝑡1, 𝑡2), it is eval-
uated by exploring T via depth-first search (DFS), starting at the
root. At each internal node 𝑁 of T , we pick a child 𝑁𝑐 such that the
edge (𝑁, 𝑁𝑐 ), whose associated predicate is 𝑝 , has the highest score
among all children of 𝑁 . Then we check whether ℎ(𝑡1, 𝑡2) |= 𝑝 . If it
is the case, we move to 𝑁𝑐 and process 𝑁𝑐 similarly. Otherwise, we
check whether𝑁 still has other unexplored children and we process
them similarly, according to the decreasing order of scores. If all
children of 𝑁 are explored, we return to the parent 𝑁𝑝 of 𝑁 and
repeat the process. The evaluation completes if we reach the first
leaf of T . Suppose the rule associated with this leaf is 𝜑 : 𝑋 → 𝑙 .
This means ℎ(𝑡1, 𝑡2) satisfies all predicates in 𝑋 , along the path
from the root to that leaf, and thus ℎ(𝑡1, 𝑡2) |= 𝑋 , i.e., we find a
witness at (𝑡1, 𝑡2), and the remaining tree traversal can be skipped.

Example 5: Consider an execution tree T in Figure 4(b), which
depicts MDs in Example 2. For simplicity, we denote a predicate
𝑡 .𝐴 = 𝑠 .𝐴 (resp. 𝑡 .𝐴 ≈ 𝑠 .𝐴) by 𝑝=

𝐴
(resp. 𝑝≈

𝐴
) and the score associated

with each edge is labeled. DFS starts at the root, which has two chil-
dren. It first explores the edge labeled 𝑝=sname since its score is higher.
When DFS completes, MDs 𝜑2, 𝜑1 and 𝜑3 are checked in order. □

4.2 Execution plan generation
Taking the set Δ ofMDs as input, EPG in HyperBlocker returns an
execution plan T in the following two major steps:

(1) We order all predicates appeared in Δ, by estimating their evalu-
ation costs via a shallow model and quantifying their probabilities
of being satisfied, by investigating the underlying data distribution.

(2) Based on the predicate ordering, we build an execution tree
T by iteratingMDs in Δ. Moreover, we compute a score for each
edge in T , by considering the probability of finding a witness, i.e.,
reaching a leaf, if we explore T following this edge.

Note that plan generation in EPG can be regarded as a (quick)
pre-processing step for blocking, i.e., once an execution plan is gen-
erated, it is applied in all partitions of𝐷 . Belowwe present these two
steps. For simplicity, we assume w.l.o.g. that 𝐷 is itself a partition.

Predicate ordering.Denote by P the set of all predicates appeared
in Δ. Intuitively, not all predicates in P are equally potent for evalu-



ation, e.g., although texts (e.g., description) are often more informa-
tive than categorical attributes (e.g., color), the former comparison is
more expensive. A simple idea is to order predicates by only consid-
ering attribute types and operators (e.g., prioritize equality like tra-
ditional optimizers). However, the time/effect of evaluating a predi-
cate for distinct tuples can be different. Without taking the underly-
ing data into account, it can lead to poor ordering. Motivated by this,
we order the predicates in P by their “cost-effectiveness” on 𝐷 .

For simplicity, below we consider a predicate 𝑝 that compares
𝐴-values of two tuples, i.e., 𝑡 .𝐴 = 𝑠 .𝐴 or 𝑡 .𝐴 ≈ 𝑠 .𝐴 (simply 𝑝=

𝐴
or

𝑝≈
𝐴
). All discussion extends to other predicate types, e.g., 𝑡 .𝐴 = 𝑠 .𝐵.

Evaluation cost.We measure the evaluation cost of a predicate 𝑝 by
the time for evaluating 𝑝 ; a predicate that can be evaluated quickly
should be checked first. Given a predicate 𝑝 in P and a relation 𝐷 ,
the evaluation cost of 𝑝 on 𝐷 , denoted by cost(𝑝, 𝐷), is:

cost(𝑝, 𝐷) =
∑︂

(𝑡1,𝑡2 ) ∈𝐷×𝐷
𝑇𝑝 (𝑡1, 𝑡2).

where 𝑇𝑝 (𝑡1, 𝑡2) denotes the actual time for checking ℎ(𝑡1, 𝑡2) |= 𝑝 .
Note that it can be costly to iterate all tuple pairs in𝐷 to compute

the exact evaluation cost of 𝑝 on 𝐷 . Thus, below we train a shallow
NNs, denoted byN , (i.e., a small feed-forward neural network [47])
to estimate the exact 𝑇𝑝 (𝑡1, 𝑡2), since it has been proven effective
in approximating a continuous function on a closed interval [75].
Shallow NNs. The inputs of N are two tuples 𝑡1 and 𝑡2, and a pred-
icate 𝑝 , that compares the 𝐴-values of 𝑡1 and 𝑡2. It first encodes the
attribute type and the 𝐴-value of 𝑡1 into an embedding 𝑡1⃗; similarly
for 𝑡2⃗. The embeddings are then fed to a feed-forward neural net-
work, which outputs the estimated time for evaluating 𝑝 on (𝑡1, 𝑡2).
We train N offline with training data sampled from historical logs,
so that the training data follows the same distribution as 𝐷 .
Estimated cost. Based on N , the estimated cost of 𝑝 on 𝐷 is

costˆ (𝑝, 𝐷) = norm
(︁ ∑︂
(𝑡1,𝑡2 ) ∈𝐷×𝐷

N(𝑝, 𝑡1, 𝑡2)
)︁
,

where norm(·) normalizes the estimated cost in the range (0,1]. In
practice, we can also use a sampled set from 𝐷 for estimating costs.

Effectiveness. We measure the effectiveness of predicate 𝑝 by its
selectivity, i.e., the probability of being satisfied. Given the attribute
𝐴 compared in 𝑝 , we quantify how likely 𝑡1 and 𝑡2 have distinc-
t/dissimilar values on 𝐴. If 𝑡1 and 𝑡2 do so with a high probability, 𝑝
is less likely to be satisfied; such predicate should be evaluated first
since it concludes that anMD involving 𝑝 is not a witness early.

To achieve this, we investigate the data distribution in 𝐷 . Specif-
ically, we use LSH [17] to hash the 𝐴-values of all tuples into 𝑘
buckets, so that similar/same values are hashed into the same bucket
with a high probability, where 𝑘 is a predefined parameter.

Denote the number of tuples hashed to the 𝑖-th bucket by 𝑏𝑖 .
Intuitively, the evenness of hashing results reflects the probability
of 𝑝 being satisfied. If all tuples are hashed into the same bucket,
it means that the 𝐴-values of all tuples are similar and thus 𝑝
(which compares the 𝐴-values) is likely to be satisfied by many
pairs (𝑡1, 𝑡2); such predicates should be evaluated with low-priority.
Motivated by this, the probability of 𝑝 being satisfied on 𝐷 , denoted
by sp(𝑝, 𝐷), is estimated by measuring the evenness of hashing, i.e.,
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<latexit sha1_base64="l30SwooEmjZM4fGG1X7w2KxOGtk=">AAACDXicbVC7SgNBFL2b+IjxtUasbBYTwSrsCj7KgBZiFcE8IFnC7GSSDJndWWZm1bDkB2z8FRsLRQQrewvByj8xTh6FJp5h4Mw593LnHi9kVCrb/jQSybn5hcXUUnp5ZXVt3dzIlCWPBCYlzBkXVQ9JwmhASooqRqqhIMj3GKl43ZOhX7kiQlIeXKpeSFwftQPaohgpLXEzAzmoA4JQHwEcbqCh3124hhjO4RT63wPINcysnbdHsGaJMyHZQvJj8Lr1RYoN873e5DjySaAwQ1LWHDtUboyEopiRfroeSRIi3EVtUtM0QD6Rbjzapm/taqVptbjQN1DWSP3dESNfyp7v6UofqY6c9obif14tUq1jN6ZBGCkS4PGgVsQsxa1hNFaTCoIV62mCsKD6rxbuIIGw0gGmdQjO9MqzpLyfdw7zBxdOtmDDGCnYhh3YAweOoABnUIQSYLiFe3iEJ+POeDCejZdxacKY9GzCHxhvP4BBmpY=</latexit>⇡JDs.desc

CP

t.desc <latexit sha1_base64="l30SwooEmjZM4fGG1X7w2KxOGtk=">AAACDXicbVC7SgNBFL2b+IjxtUasbBYTwSrsCj7KgBZiFcE8IFnC7GSSDJndWWZm1bDkB2z8FRsLRQQrewvByj8xTh6FJp5h4Mw593LnHi9kVCrb/jQSybn5hcXUUnp5ZXVt3dzIlCWPBCYlzBkXVQ9JwmhASooqRqqhIMj3GKl43ZOhX7kiQlIeXKpeSFwftQPaohgpLXEzAzmoA4JQHwEcbqCh3124hhjO4RT63wPINcysnbdHsGaJMyHZQvJj8Lr1RYoN873e5DjySaAwQ1LWHDtUboyEopiRfroeSRIi3EVtUtM0QD6Rbjzapm/taqVptbjQN1DWSP3dESNfyp7v6UofqY6c9obif14tUq1jN6ZBGCkS4PGgVsQsxa1hNFaTCoIV62mCsKD6rxbuIIGw0gGmdQjO9MqzpLyfdw7zBxdOtmDDGCnYhh3YAweOoABnUIQSYLiFe3iEJ+POeDCejZdxacKY9GzCHxhvP4BBmpY=</latexit>⇡JD
<latexit sha1_base64="l30SwooEmjZM4fGG1X7w2KxOGtk=">AAACDXicbVC7SgNBFL2b+IjxtUasbBYTwSrsCj7KgBZiFcE8IFnC7GSSDJndWWZm1bDkB2z8FRsLRQQrewvByj8xTh6FJp5h4Mw593LnHi9kVCrb/jQSybn5hcXUUnp5ZXVt3dzIlCWPBCYlzBkXVQ9JwmhASooqRqqhIMj3GKl43ZOhX7kiQlIeXKpeSFwftQPaohgpLXEzAzmoA4JQHwEcbqCh3124hhjO4RT63wPINcysnbdHsGaJMyHZQvJj8Lr1RYoN873e5DjySaAwQ1LWHDtUboyEopiRfroeSRIi3EVtUtM0QD6Rbjzapm/taqVptbjQN1DWSP3dESNfyp7v6UofqY6c9obif14tUq1jN6ZBGCkS4PGgVsQsxa1hNFaTCoIV62mCsKD6rxbuIIGw0gGmdQjO9MqzpLyfdw7zBxdOtmDDGCnYhh3YAweOoABnUIQSYLiFe3iEJ+POeDCejZdxacKY9GzCHxhvP4BBmpY=</latexit>⇡JDs.desc

t.saddress <latexit sha1_base64="XbOjGFwrnUWiwS8qyNGIv7qzJSI=">AAAB9XicbVDLSgMxFM20Pmp9VcWVm2AruCozgo9lQQWXFewD2rFk0kwbmklCklHL0P9w40IRt36Dv+BCcOWnaPpYaOuBC4dz7uXeewLJqDau++mk0nPzC4uZpezyyuraem5js6pFrDCpYMGEqgdIE0Y5qRhqGKlLRVAUMFILeqdDv3ZDlKaCX5m+JH6EOpyGFCNjpetCE0mpxF0rOT8bFFq5vFt0R4CzxJuQfCn98f22/UXKrdx7sy1wHBFuMENaNzxXGj9BylDMyCDbjDWRCPdQhzQs5Sgi2k9GVw/gnlXaMBTKFjdwpP6eSFCkdT8KbGeETFdPe0PxP68Rm/DETyiXsSEcjxeFMYNGwGEEsE0VwYb1LUFYUXsrxF2kEDY2qKwNwZt+eZZUD4reUfHw0suXXDBGBuyAXbAPPHAMSuAClEEFYKDAPXgET86t8+A8Oy/j1pQzmdkCf+C8/gCVTZZL</latexit>⇡ED
<latexit sha1_base64="XbOjGFwrnUWiwS8qyNGIv7qzJSI=">AAAB9XicbVDLSgMxFM20Pmp9VcWVm2AruCozgo9lQQWXFewD2rFk0kwbmklCklHL0P9w40IRt36Dv+BCcOWnaPpYaOuBC4dz7uXeewLJqDau++mk0nPzC4uZpezyyuraem5js6pFrDCpYMGEqgdIE0Y5qRhqGKlLRVAUMFILeqdDv3ZDlKaCX5m+JH6EOpyGFCNjpetCE0mpxF0rOT8bFFq5vFt0R4CzxJuQfCn98f22/UXKrdx7sy1wHBFuMENaNzxXGj9BylDMyCDbjDWRCPdQhzQs5Sgi2k9GVw/gnlXaMBTKFjdwpP6eSFCkdT8KbGeETFdPe0PxP68Rm/DETyiXsSEcjxeFMYNGwGEEsE0VwYb1LUFYUXsrxF2kEDY2qKwNwZt+eZZUD4reUfHw0suXXDBGBuyAXbAPPHAMSuAClEEFYKDAPXgET86t8+A8Oy/j1pQzmdkCf+C8/gCVTZZL</latexit>⇡EDs.saddress

CP

(a) order of predicates

[ 
<latexit sha1_base64="TF/mViAogp3JwTtlkKPI4zJeqaQ=">AAACcnicbVFdSxtBFJ1dtWrqR6r4oqBTY8GHEHZLq74IQQ1In1JoTCCJy+zsTRwyuzvMzKph2R/QP9Mf07f+Cl/03dlsKPHjwsC559zD/RhfcKa04/yz7Ln5hQ+LS8uljyura+vlTxtXKk4khRaNeSw7PlHAWQQtzTSHjpBAQp9D2x+d53r7FqRicfRLjwX0QzKM2IBRog3llX8fCK83uktVRELIrk+ruMiFZHQ2VyQIJCiVXac9IoSM7720cZFl/+sL//tiAIrWZsUfuVhokxVMowOvXHFqziTwW+BOQaWO17pnjac/Ta/8txfENAkh0pQTpbquI3Q/JVIzyiEr9RIFgtARGULXwHxA1Z/2w18ME+BBLM2LNJ6ws46UhEqNQ99UhkTfqNdaTr6ndRM9OOmnLBKJhogWjQYJxzrG+f1xwCRQzccGECqZmRXTGyIJ1eaXSuYI7uuV34KrrzX3qPb9p1upf0NFLKEdtI8OkYuOUR1doiZqIYoerC1r19qzHu1t+7NdKUpta+rZRC/Crj4DDI/DkQ==</latexit>

p=
sname, p

=
price, p

⇡ED

saddress, p
⇡ED
pname, p

⇡JD

desc., p
=
color

<latexit sha1_base64="TF/mViAogp3JwTtlkKPI4zJeqaQ=">AAACcnicbVFdSxtBFJ1dtWrqR6r4oqBTY8GHEHZLq74IQQ1In1JoTCCJy+zsTRwyuzvMzKph2R/QP9Mf07f+Cl/03dlsKPHjwsC559zD/RhfcKa04/yz7Ln5hQ+LS8uljyura+vlTxtXKk4khRaNeSw7PlHAWQQtzTSHjpBAQp9D2x+d53r7FqRicfRLjwX0QzKM2IBRog3llX8fCK83uktVRELIrk+ruMiFZHQ2VyQIJCiVXac9IoSM7720cZFl/+sL//tiAIrWZsUfuVhokxVMowOvXHFqziTwW+BOQaWO17pnjac/Ta/8txfENAkh0pQTpbquI3Q/JVIzyiEr9RIFgtARGULXwHxA1Z/2w18ME+BBLM2LNJ6ws46UhEqNQ99UhkTfqNdaTr6ndRM9OOmnLBKJhogWjQYJxzrG+f1xwCRQzccGECqZmRXTGyIJ1eaXSuYI7uuV34KrrzX3qPb9p1upf0NFLKEdtI8OkYuOUR1doiZqIYoerC1r19qzHu1t+7NdKUpta+rZRC/Crj4DDI/DkQ==</latexit>

p=
sname, p

=
price, p

⇡ED

saddress, p
⇡ED
pname, p

⇡JD

desc., p
=
color ]

N1

N0

N2 N3

N4
N5

N6 N7

 <latexit sha1_base64="5g1JvHngDaC4fswNnexQGi4BvEw=">AAAB+XicbVDLSsNAFL3xWavVWJdugq3QVUkKPjZCwY3LCvYBbQyT6bQdOpnEmUmlhH6Bv+DGhSLizj9xJ/6Mk7YLbT1w4XDOvdx7jx8xKpVtfxkrq2vrG5uZrez2Tm53z9zPN2QYC0zqOGShaPlIEkY5qSuqGGlFgqDAZ6TpDy9TvzkiQtKQ36hxRNwA9TntUYyUljzTLEZeZ3ifSI4CMrm9KHpmwS7bU1jLxJmTQjVf+n54v8vVPPOz0w1xHBCuMENSth07Um6ChKKYkUm2E0sSITxEfdLWNN0j3WR6+cQ61krX6oVCF1fWVP09kaBAynHg684AqYFc9FLxP68dq965m1AexYpwPFvUi5mlQiuNwepSQbBiY00QFlTfauEBEggrHVZWh+AsvrxMGpWyc1o+uXYK1QrMkIFDOIISOHAGVbiCGtQBwwge4RlejMR4Ml6Nt1nrijGfOYA/MD5+ACbNlkg=</latexit>

p=
sname

<latexit sha1_base64="5g1JvHngDaC4fswNnexQGi4BvEw=">AAAB+XicbVDLSsNAFL3xWavVWJdugq3QVUkKPjZCwY3LCvYBbQyT6bQdOpnEmUmlhH6Bv+DGhSLizj9xJ/6Mk7YLbT1w4XDOvdx7jx8xKpVtfxkrq2vrG5uZrez2Tm53z9zPN2QYC0zqOGShaPlIEkY5qSuqGGlFgqDAZ6TpDy9TvzkiQtKQ36hxRNwA9TntUYyUljzTLEZeZ3ifSI4CMrm9KHpmwS7bU1jLxJmTQjVf+n54v8vVPPOz0w1xHBCuMENSth07Um6ChKKYkUm2E0sSITxEfdLWNN0j3WR6+cQ61krX6oVCF1fWVP09kaBAynHg684AqYFc9FLxP68dq965m1AexYpwPFvUi5mlQiuNwepSQbBiY00QFlTfauEBEggrHVZWh+AsvrxMGpWyc1o+uXYK1QrMkIFDOIISOHAGVbiCGtQBwwge4RlejMR4Ml6Nt1nrijGfOYA/MD5+ACbNlkg=</latexit>

p=
sname

 
<latexit sha1_base64="Iv9jd7FUi1GBWgJAmOoYm2zoPBY=">AAACCHicbVDLSsNAFJ3UV1tf8YEbFwZbwVVJCj6WBV2Iqwr2AU0Mk8m0Dp0kw8xELSFLEfwVNy4UcesnuPNnxGnahbYeuHA4517uvcdjlAhpml9abmZ2bn4hXyguLi2vrOpr600RxRzhBopoxNseFJiSEDckkRS3Gccw8Chuef2Tod+6wVyQKLyUA4adAPZC0iUISiW5+k6ZuXb/NvGxQOlVYkPGeHSXSeenaVp29ZJZMTMY08Qak1Jta7NZKXw/1F390/YjFAc4lIhCITqWyaSTQC4Jojgt2rHADKI+7OGOoiEMsHCS7JHU2FOKb3QjriqURqb+nkhgIMQg8FRnAOW1mPSG4n9eJ5bdYychIYslDtFoUTemhoyMYSqGTzhGkg4UgYgTdauBriGHSKrsiioEa/LladKsVqzDysGFVapVwQh5sA12wT6wwBGogTNQBw2AwD14Ai/gVXvUnrU37X3UmtPGMxvgD7SPH8eXnK8=</latexit>

p⇡JD

desc

<latexit sha1_base64="Iv9jd7FUi1GBWgJAmOoYm2zoPBY=">AAACCHicbVDLSsNAFJ3UV1tf8YEbFwZbwVVJCj6WBV2Iqwr2AU0Mk8m0Dp0kw8xELSFLEfwVNy4UcesnuPNnxGnahbYeuHA4517uvcdjlAhpml9abmZ2bn4hXyguLi2vrOpr600RxRzhBopoxNseFJiSEDckkRS3Gccw8Chuef2Tod+6wVyQKLyUA4adAPZC0iUISiW5+k6ZuXb/NvGxQOlVYkPGeHSXSeenaVp29ZJZMTMY08Qak1Jta7NZKXw/1F390/YjFAc4lIhCITqWyaSTQC4Jojgt2rHADKI+7OGOoiEMsHCS7JHU2FOKb3QjriqURqb+nkhgIMQg8FRnAOW1mPSG4n9eJ5bdYychIYslDtFoUTemhoyMYSqGTzhGkg4UgYgTdauBriGHSKrsiioEa/LladKsVqzDysGFVapVwQh5sA12wT6wwBGogTNQBw2AwD14Ai/gVXvUnrU37X3UmtPGMxvgD7SPH8eXnK8=</latexit>

p⇡JD

desc

 
<latexit sha1_base64="PeHupyS2eIydQEyXtcUv0ySz9Oo=">AAACCXicbVDLSsNAFJ3UV1tf8YEbN4Ot4KokBR/LggouK9gHtDFMJtN26CQZZiZqCdnqwl9x40IRt/6BO39GnD4W2nrgwuGce7n3Ho8zKpVlfRmZufmFxaVsLr+8srq2bm5s1mUUC0xqOGKRaHpIEkZDUlNUMdLkgqDAY6Th9U+HfuOGCEmj8EoNOHEC1A1ph2KktOSasMjdRCLfF0TK9DppI85FdOe2+7fJ+VmaFl2zYJWsEeAssSekUNnZrpdy3w9V1/xs+xGOAxIqzJCULdviykmQUBQzkubbsSQc4T7qkpamIQqIdJLRJync14oPO5HQFSo4Un9PJCiQchB4ujNAqienvaH4n9eKVefESWjIY0VCPF7UiRlUERzGAn0qCFZsoAnCgupbIe4hgbDS4eV1CPb0y7OkXi7ZR6XDS7tQKYMxsmAX7IEDYINjUAEXoApqAIN78ARewKvxaDwbb8b7uDVjTGa2wB8YHz+vfJ0w</latexit>

p⇡ED

saddress

<latexit sha1_base64="PeHupyS2eIydQEyXtcUv0ySz9Oo=">AAACCXicbVDLSsNAFJ3UV1tf8YEbN4Ot4KokBR/LggouK9gHtDFMJtN26CQZZiZqCdnqwl9x40IRt/6BO39GnD4W2nrgwuGce7n3Ho8zKpVlfRmZufmFxaVsLr+8srq2bm5s1mUUC0xqOGKRaHpIEkZDUlNUMdLkgqDAY6Th9U+HfuOGCEmj8EoNOHEC1A1ph2KktOSasMjdRCLfF0TK9DppI85FdOe2+7fJ+VmaFl2zYJWsEeAssSekUNnZrpdy3w9V1/xs+xGOAxIqzJCULdviykmQUBQzkubbsSQc4T7qkpamIQqIdJLRJync14oPO5HQFSo4Un9PJCiQchB4ujNAqienvaH4n9eKVefESWjIY0VCPF7UiRlUERzGAn0qCFZsoAnCgupbIe4hgbDS4eV1CPb0y7OkXi7ZR6XDS7tQKYMxsmAX7IEDYINjUAEXoApqAIN78ARewKvxaDwbb8b7uDVjTGa2wB8YHz+vfJ0w</latexit>

p⇡ED

saddress  
<latexit sha1_base64="Iv9jd7FUi1GBWgJAmOoYm2zoPBY=">AAACCHicbVDLSsNAFJ3UV1tf8YEbFwZbwVVJCj6WBV2Iqwr2AU0Mk8m0Dp0kw8xELSFLEfwVNy4UcesnuPNnxGnahbYeuHA4517uvcdjlAhpml9abmZ2bn4hXyguLi2vrOpr600RxRzhBopoxNseFJiSEDckkRS3Gccw8Chuef2Tod+6wVyQKLyUA4adAPZC0iUISiW5+k6ZuXb/NvGxQOlVYkPGeHSXSeenaVp29ZJZMTMY08Qak1Jta7NZKXw/1F390/YjFAc4lIhCITqWyaSTQC4Jojgt2rHADKI+7OGOoiEMsHCS7JHU2FOKb3QjriqURqb+nkhgIMQg8FRnAOW1mPSG4n9eJ5bdYychIYslDtFoUTemhoyMYSqGTzhGkg4UgYgTdauBriGHSKrsiioEa/LladKsVqzDysGFVapVwQh5sA12wT6wwBGogTNQBw2AwD14Ai/gVXvUnrU37X3UmtPGMxvgD7SPH8eXnK8=</latexit>

p⇡JD

desc

<latexit sha1_base64="Iv9jd7FUi1GBWgJAmOoYm2zoPBY=">AAACCHicbVDLSsNAFJ3UV1tf8YEbFwZbwVVJCj6WBV2Iqwr2AU0Mk8m0Dp0kw8xELSFLEfwVNy4UcesnuPNnxGnahbYeuHA4517uvcdjlAhpml9abmZ2bn4hXyguLi2vrOpr600RxRzhBopoxNseFJiSEDckkRS3Gccw8Chuef2Tod+6wVyQKLyUA4adAPZC0iUISiW5+k6ZuXb/NvGxQOlVYkPGeHSXSeenaVp29ZJZMTMY08Qak1Jta7NZKXw/1F390/YjFAc4lIhCITqWyaSTQC4Jojgt2rHADKI+7OGOoiEMsHCS7JHU2FOKb3QjriqURqb+nkhgIMQg8FRnAOW1mPSG4n9eJ5bdYychIYslDtFoUTemhoyMYSqGTzhGkg4UgYgTdauBriGHSKrsiioEa/LladKsVqzDysGFVapVwQh5sA12wT6wwBGogTNQBw2AwD14Ai/gVXvUnrU37X3UmtPGMxvgD7SPH8eXnK8=</latexit>

p⇡JD

desc

 <latexit sha1_base64="qpPxk5lQ7nCRBNUUxb21xYBuMtE=">AAAB+XicbVDJSgNBEK1xjXEbl5uXxkTIKcwEXC5CQA9ehAhmgWQcejo9SZOehe6eSBjyJ148KOLVH/AbvHn2NzzYWQ6a+KDg8V5VV9fzYs6ksqxPY2FxaXllNbOWXd/Y3No2d3ZrMkoEoVUS8Ug0PCwpZyGtKqY4bcSC4sDjtO71LkZ+vU+FZFF4qwYxdQLcCZnPCFZack0zH7ut3n06fml4d553zZxVtMZA88Seklx5//2ycP39VXHNj1Y7IklAQ0U4lrJpW7FyUiwUI5wOs61E0hiTHu7QpqYhDqh0pvvQkVbayI+ErlChsfp7IsWBlIPA050BVl05643E/7xmovwzJ2VhnCgakskiP+FIRWgUA2ozQYniA00wEUz/FZEuFpgoHVZWh2DPnjxPaqWifVI8vrFz5RJMkIEDOIQC2HAKZbiCClSBQB8e4AmejdR4NF6M10nrgjGd2YM/MN5+AA6llvU=</latexit>

p=
color

<latexit sha1_base64="qpPxk5lQ7nCRBNUUxb21xYBuMtE=">AAAB+XicbVDJSgNBEK1xjXEbl5uXxkTIKcwEXC5CQA9ehAhmgWQcejo9SZOehe6eSBjyJ148KOLVH/AbvHn2NzzYWQ6a+KDg8V5VV9fzYs6ksqxPY2FxaXllNbOWXd/Y3No2d3ZrMkoEoVUS8Ug0PCwpZyGtKqY4bcSC4sDjtO71LkZ+vU+FZFF4qwYxdQLcCZnPCFZack0zH7ut3n06fml4d553zZxVtMZA88Seklx5//2ycP39VXHNj1Y7IklAQ0U4lrJpW7FyUiwUI5wOs61E0hiTHu7QpqYhDqh0pvvQkVbayI+ErlChsfp7IsWBlIPA050BVl05643E/7xmovwzJ2VhnCgakskiP+FIRWgUA2ozQYniA00wEUz/FZEuFpgoHVZWh2DPnjxPaqWifVI8vrFz5RJMkIEDOIQC2HAKZbiCClSBQB8e4AmejdR4NF6M10nrgjGd2YM/MN5+AA6llvU=</latexit>

p=
color

 
<latexit sha1_base64="d9be49L7dcsJyNQg4HAyVu1bE8c=">AAACCXicbVC7SgNBFJ31GeMraplmMBGswm7ARxlQwTKCeUA2LrOTSTJkdnaYmVXDsq2N/oadjYWigpV/YOeH2Dt5FJp44MLhnHu59x5fMKq0bX9ZM7Nz8wuLqaX08srq2npmY7OqwkhiUsEhC2XdR4owyklFU81IXUiCAp+Rmt87Gvi1SyIVDfm57gvSDFCH0zbFSBvJy8C88NzeVSw4CkhyEbtICBleD7WT4yTJe5mcXbCHgNPEGZNcKft9/+rfvZe9zKfbCnEUEK4xQ0o1HFvoZoykppiRJO1GigiEe6hDGoYO9qpmPPwkgTtGacF2KE1xDYfq74kYBUr1A990Bkh31aQ3EP/zGpFuHzZjykWkCcejRe2IQR3CQSywRSXBmvUNQVhScyvEXSQR1ia8tAnBmXx5mlSLBWe/sHfm5EpFMEIKZME22AUOOAAlcArKoAIwuAEP4Ak8W7fWo/VivY1aZ6zxzBb4A+vjByKXnwM=</latexit>

p⇡ED
pname

<latexit sha1_base64="d9be49L7dcsJyNQg4HAyVu1bE8c=">AAACCXicbVC7SgNBFJ31GeMraplmMBGswm7ARxlQwTKCeUA2LrOTSTJkdnaYmVXDsq2N/oadjYWigpV/YOeH2Dt5FJp44MLhnHu59x5fMKq0bX9ZM7Nz8wuLqaX08srq2npmY7OqwkhiUsEhC2XdR4owyklFU81IXUiCAp+Rmt87Gvi1SyIVDfm57gvSDFCH0zbFSBvJy8C88NzeVSw4CkhyEbtICBleD7WT4yTJe5mcXbCHgNPEGZNcKft9/+rfvZe9zKfbCnEUEK4xQ0o1HFvoZoykppiRJO1GigiEe6hDGoYO9qpmPPwkgTtGacF2KE1xDYfq74kYBUr1A990Bkh31aQ3EP/zGpFuHzZjykWkCcejRe2IQR3CQSywRSXBmvUNQVhScyvEXSQR1ia8tAnBmXx5mlSLBWe/sHfm5EpFMEIKZME22AUOOAAlcArKoAIwuAEP4Ak8W7fWo/VivY1aZ6zxzBb4A+vjByKXnwM=</latexit>
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Ordering scheme. Putting these together, we can order all the

predicates 𝑝 in P by the cost-effectiveness, defined to be 1−sp(𝑝,𝐷 )
costˆ (𝑝,𝐷 ) .

Intuitively, hard-to-satisfied predicates will be evaluated first, since
they are more likely to fail a rule, while costly predicates will be
penalized, to strike a balance between the cost and the effectiveness.

Example 6: Consider two predicates 𝑝=color and 𝑝
≈ED
pname in 𝜑1. On

the one hand, since 𝑝=color is an equality comparison while 𝑝≈ED
pname

computes the edit distance, 𝑝≈ED
pname is more costly to evaluate, e.g.,

costˆ (𝑝=color, 𝐷) = 0.1 < costˆ (𝑝≈ED
pname, 𝐷) = 0.6. On the other hand,

since all tuples in 𝐷 have the same color (and satisfy 𝑝=color), we
have sp(𝑝=color, 𝐷) = 1; similarly, let sp(𝑝≈ED

pname, 𝐷) = 0.4. Then the
cost-effectiveness of 𝑝=color and 𝑝

≈ED
pname are 1−1

0.1 = 0 and 1−0.2
1 = 0.8,

respectively, and 𝑝≈ED
pname is ordered before 𝑝=color (see Figure 4(a)). □

Constructing an execution tree. We initialize the execution tree
T with a single root node 𝑁0. Then based on the predicate ordering,
we progressively construct T by processing the MDs in Δ one by
one. For each MD 𝜑 : 𝑋 → 𝑙 ∈ Δ, we assume the predicates in
𝑋 are sorted in the descending order of their cost-effectiveness,
i.e., if 𝑋 is 𝑝1 ∧ 𝑝2 ∧ . . . ∧ 𝑝 |𝑋 | , then

1−sp(𝑝𝑖 ,𝐷 )
costˆ (𝑝𝑖 ,𝐷 ) >

1−sp(𝑝 𝑗 ,𝐷 )
costˆ (𝑝 𝑗 ,𝐷 ) for

1 ≤ 𝑖 < 𝑗 ≤ |𝑋 |. We traverse T , starting from the root, and process
the predicates in 𝑋 , starting from 𝑝1. Suppose that the traversal is
at a node 𝑁 and the predicate we are processing is 𝑝𝑖 . We check
the children of 𝑁 . If there exists a child node 𝑁𝑐 of 𝑁 such that the
edge (𝑁, 𝑁𝑐 ) represents 𝑝𝑖 , we move to this child and process the
next predicate 𝑝𝑖+1 in 𝑋 . Otherwise, we create a new child node
𝑁𝑐 for 𝑁 such that the edge (𝑁, 𝑁𝑐 ) represents 𝑝𝑖 , move to this
new child and process the next predicate 𝑝𝑖+1 in 𝑋 . The traversal
process continues until all predicates in 𝑋 are processed and we set
the current node we reach as a leaf node, whose associated rule is 𝜑 .

Example 7: The predicate ordering is shown in Figure 4(a). Assume
that we have processed 𝜑1 and created path (𝑁0, 𝑁1, 𝑁2, 𝑁3, 𝑁4) in
T in Figure 4(b). Then we show how 𝜑2 : 𝑝=sname ∧ 𝑝

≈JD

description → 𝑙

is processed. We start from the root and process 𝑝=sname. Since there
is a child 𝑁1 of root labeled 𝑝=sname, we move to 𝑁1 and process
𝑝
≈JD

description. Since there is no child of 𝑁1 labeled 𝑝
≈JD

description, we cre-

ate a new 𝑁5 and label (𝑁1, 𝑁5) as 𝑝
≈JD

description. Since all predicates
in𝜑2 are processed,𝑁5 is a leaf node, whose associated rule is𝜑2. □



Intuitively, given (𝑡1, 𝑡2) and 𝜑 ∈ Δ, if 𝜑 is more likely to be a
witness at (𝑡1, 𝑡2), it should be evaluated earlier. Motivated by this,
we compute the probability for 𝜑 : 𝑋 → 𝑙 to be a witness on 𝐷 as:

wp(𝜑, 𝐷) =
∏︂
𝑝∈𝑋

sp(𝑝, 𝐷)

if we assume the satisfaction of predicates as independent events;
intuitively, if all predicates in 𝑋 are satisfied, 𝜑 is a witness. If this
does not hold, we can reuse historical logs and estimate wp(𝜑, 𝐷),
to be the proportion of historical pairs such that𝜑 is a witness. Since
the evaluation ofMDs in Δ is guided by edge scores during DFS on
T , below we define the score of a given edge 𝑒 based on wp(𝜑, 𝐷).
Edge score. For eachMD𝜑 , we denote by 𝜌𝜑 the path of T from root
to the leaf whose associatedMD is 𝜑 . We compute the set ofMDs
𝜑 in Δ such that the given edge 𝑒 is part of 𝜌𝜑 and denote it by Ψ𝑒 ,
i.e., Ψ𝑒 = {𝜑 ∈ Δ | 𝑒 is part of 𝜌𝜑 }. The score of edge 𝑒 is score(𝑒) =
max𝜌𝜑 ∈Ψ𝑒 wp(𝜑, 𝐷). This said, edges leading to promising MDs
will have high scores and thus, will be explored early via DFS on T .

Example 8: Let sp(𝑝=sname, 𝐷) = 0.4 and sp(𝑝≈JD

description, 𝐷) = 0.2.
Then wp(𝜑2, 𝐷) = 0.4 × 0.2 = 0.08. Assume that we also compute
wp(𝜑1, 𝐷) = 0.048. Then the score of edge 𝑒 = (𝑁0, 𝑁1) is max{
wp(𝜑1, 𝐷),wp(𝜑2, 𝐷)} = 0.08, since 𝑒 is part of both 𝜌𝜑1 and 𝜌𝜑2 . □

Complexity. It takes EPG𝑂 (𝑐unit |P | + |P| log( |P|) + |𝜑 | |Δ|) time
to generate the execution plan, where 𝑐unit is the unit time for com-
puting the cost-effectiveness of a predicate. This is because the pred-
icate ordering can be obtained in 𝑂 (𝑐unit |P | + |P| log( |P|)) time
and the tree can be constructed in ( |𝜑 | |Δ|) time, by scanning Δ once.

Remark. As a by-product of ensuring the predicate ordering and
DFS tree traversal, we can reuse the evaluation results of common
“prefix” predicates (i.e., common predecessors in T ). Moreover, if a
tuple pair fails to satisfy the predicate associated with edge (𝑁, 𝑁𝑐 )
in T , the evaluation of all descendants of 𝑁𝑐 is bypassed directly.

Example 9: We evaluate T in Figure 4(b) for (𝑡1, 𝑡5) in 𝐷 . After
evaluating 𝑝=sname, we find that ℎ(𝑡1, 𝑡5) ̸|= 𝑝

≈JD

description and thus we
cannot move to𝑁5. Then DFSwill return back to𝑁1 and continue to
check unexplored children of 𝑁1 (i.e., 𝑁2). In this way, the common
“prefix” predicate 𝑝=sname of 𝜑1 and 𝜑2 is only evaluated once. □

5 OPTIMIZATIONS AND SCHEDULING
As remarked earlier, GPUs adopt SIMT execution, where a thread is
idle if other threads take longer (i.e., thread divergence). Below are
sources of divergence (some are specific to rule-based blocking).
◦ Conditional statements. GPUs may execute different paths in con-

ditional statements (Section 2), e.g., one pair may be quickly iden-
tified as a potential match if the first MD checked is its witness,
while another is found as a mismatch until all MDs are iterated.

◦ Data-dependent execution. The execution depends on the data
being processed, e.g., even for the same predicate, the evaluation
time on different tuples is different (e.g., long vs. short text).

◦ Imbalanced workloads. If the workload assigned to each thread
is not evenly distributed, some may complete faster than others.
While thread divergence is a general issue in GPU-programming,

rule-based blocking offers some unique opportunities to mitigate

it, e.g., the evaluations of distinct pairs are often independent tasks,
making it possible to (a) assign approximately equal tasks to threads,
to enable workload balancing, and (b) “steal” tasks from other
threads, to cope with different execution paths and data-dependent
execution. Below we present the hardware-aware optimization
and scheduling techniques that exploit GPU characteristics for
massive parallelism, including: (a) efficient device execution of an
execution plan (Section 5.1), (b) strategies to mitigate divergence
(Section 5.2), (c) collaboration of multiple GPUs (Section 5.3).

5.1 Execution plan on GPUs
The execution plan T , initially generated on CPUs, will undergo the
evaluation onGPUs in aDFSmanner. However, DFS tree traversal is
typically recursively implemented, which is not efficient on GPUs. It
may exacerbate divergence since each call adds a recursive function
to the stack and incurs message payloads (see Section 6). Moreover,
although we can reuse “prefix” predicates via DFS, some predicates
may still be evaluated repeatedly, e.g., 𝑝≈JD

description in 𝜑2 and 𝜑3.
Optimized structures are required to harness the power of GPUs.

Tree traversal on GPUs. Note that upon completion of the tree
construction, the evaluation order is fixed. Thus the DFS traversal
of the tree on CPUs can be translated to a sequential execution path,
which is an ordered list of predicates, on GPUs (see Figure 4(c) for
the sequential execution path of the tree in Example 5).

We maintain two structures for each predicate 𝑝 in the execution
path: an index buffer and a function pointer buffer, which store the
indices of attributes compared in 𝑝 , and the function pointer of the
comparison operator in 𝑝 , respectively, e.g., for predicate 𝑝=sname :
𝑡 .sname = 𝑠 .sname, its comparison operator is “=” and its attribute
index is 3 since sname is the 3rd attribute in schema Products. In
addition, at the end of each rule, we set a checkpoint (CP). When
a GPU thread encounters a CP, it knows that the undergoing tuple
pair satisfies a rule and it can skip the subsequent computation.

Reusing computation. To avoid repeated evaluation, we addi-
tionally maintain a bitmap for all predicates on GPUs. The bit of a
predicate 𝑝 is set to true if 𝑝 has been evaluated. If this is the case,
we can directly reuse previous results. This bitmap can also be used
for symmetric predicates (i.e., ℎ(𝑡1, 𝑡2) |= 𝑝 iff ℎ(𝑡2, 𝑡1) |= 𝑝).

Note that to be general, we do not make the assumption that a
witness 𝜑 at (𝑡1, 𝑡2) is also a witness at (𝑡2, 𝑡1), due to, e.g., asym-
metric similarity comparison (Section 2). However, we can extend
HyperBlocker if such assumption holds, by maintaining a bitmap to
avoid repeated evaluation for (𝑡2, 𝑡1) if (𝑡1, 𝑡2) is already evaluated.

5.2 Divergence mitigation strategies
To further mitigate divergence, we propose two GPU-oriented
strategies, namely parallel sliding windows (PSW) and task-stealing.

Parallel sliding windows (PSW). Given a partition 𝑃 , PSW pro-
cesses it with only a few index jumps; it also helps GPUs evenly
distribute workloads across SMs. Specifically, PSWworks in 3 steps:
(1) We divide 𝑃 into |𝑃 |

𝑛𝑡
intervals, where each interval consists of

𝑛𝑡 tuples. These intervals are processed with a fixed-size window,
which slides the intervals from left to right.Within eachwindow, we
assign an interval to a Thread Block (TB) with warps of 32 threads;
each thread in the TB is responsible for a tuple 𝑡𝑖 in the interval.
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Figure 5: Parallel sliding windows

(2) Assume that a thread is responsible for tuple 𝑡𝑖 . Then this thread
compares 𝑡𝑖 with all the other tuples, say 𝑡 𝑗 , in 𝑃 according to the
execution plan T and decides whether (𝑡𝑖 , 𝑡 𝑗 ) is a potential match.

(3) When all threads of a TB finish, this TB writes the results back
to the host memory and it will move on to process the next interval
in the next sliding window until the window reaches the end.

Note that in total, it requires |𝑃 |
𝑛𝑡𝑛𝑤

sequential index jumps for
each TB, where 𝑛𝑤 is the size of the sliding window.

Example 10: As shown in Figure 5, a data partition 𝑃 is divided
9 intervals and the size of the sliding window is 3 (i.e., 𝑛𝑤 = 3).
Interval 1 is assigned to TB1, where each thread in TB1will compare
a tuple in Interval 1 with all other tuples in 𝑃 . When all threads of
TB1 finish evaluation, TB1 moves on to process Interval 4. □

Task-stealing. Although each TB will process roughly equal inter-
vals, the execution time of different intervals is not the same, due
to conditional statements and data-dependent execution remarked
earlier. This said, the workloads of all TBs can still be imbalanced.

Example 11: Continuing Example 10, three TBs process 9 intervals
in Figure 6(a). Even though each TB is assigned 3 intervals, the exe-
cution times can still skew, e.g., the total time units required by TB1
and TB3 are 10 and 3, respectively, i.e., TB3 is idle for 7 time units. □

Below we introduce both the inter-interval and intra-interval
task-stealing strategies to further balance the workloads.

Inter-interval task-stealing. It is commonly observed that the exe-
cution times of some TBs are longer than the others. In this case, a
large number of TBs are idle, waiting for the slowest TB.

In light of this, we employ an inter-interval task-stealing strategy.
Specifically, we maintain a bitmap in global memory, where each
bit indicates the status of an interval, so that TBs can steal not-yet-
processed intervals from each other. Each TB processes intervals
in two stages: (a) It first processes its assigned intervals one by one.
Whenever a TB starts to process an interval, the bitmap is checked. If
the bit of the interval is false (i.e., not yet processed), it processes this
interval and sets the bit true. (b) If this TB is idle after finishing all as-
signed intervals, it traverses the bitmap to steal a not-yet-processed
interval, by setting the corresponding bit true and processing that
interval. Other TBs will skip an interval if it has been stolen.

Example 12: In Example 11, TB3 finishes its assigned intervals
after 3 time units. Then it checks the bitmap and steals Interval 4;
similarly for TB2. Compared with the time in Figure 6(a), the total
time units are reduced from 10 to 7 after stealing in Figure 6(b). □

Intra-interval task-stealing. Recall that a thread for 𝑡𝑖 will compare
𝑡𝑖 with other tuples in 𝑃 . Since the evaluation of distinct pairs is inde-
pendent, we can even steal tasks from executing intervals. To facili-
tate this, we maintain two integers start and end, initialized to 1 and
|𝑃 |, respectively, indicating the remaining range of tuples to be com-

Time unit TB 1 TB 2 TB 3

IDLE
IDLE IDLE
IDLE IDLE
IDLE IDLE
IDLE IDLE
IDLE IDLE

TB 1 TB 2 TB 3
1
2
3
4
5
6
7
8
9

1
2
3
4
5
6

Time unit

IDLE IDLE

7

10 TB 1 TB 2 TB 3
1
2
3
4
5
6

Time unit
(a) Intuitive approach

(b) Iter-interval task stealing

(c) Intra-interval task stealing

Evaluate the cartesian  product 
between IntervalX and P  

IDLE
IDLE

IDLE
IDLE

IDLE

Interval 2 Interval 3
Interval 6
Interval 9Interval 1

Interval 7

Interval 4

Interval X

Interval 8
Interval 5

Interval 2

Interval 8
Interval 5

Interval 3
Interval 6
Interval 9Interval 1

Interval 7
Interval 4

Interval 3
Interval 6
Interval 9
Interval 4

Interval 1
Interval 2

Interval 8
Interval 5

Interval 7 Interval 7

Figure 6: Task-stealing

pared with 𝑡𝑖 . Then this thread starts to evaluate (𝑡𝑖 , 𝑡start). Upon
completion, it sets start = start+1 and moves on to the next pair (𝑡𝑖 ,
𝑡start). When start = end, this thread finishes all evaluation for 𝑡𝑖 .

Based on this, the intra-interval task-stealing works as follows.
If TB𝑎 finishes all assigned intervals and there are no not-yet-
processed intervals, it finds an executing TB𝑏 and iterates all threads
in TB𝑏 , so that the 𝑖-th thread in TB𝑎 steals half workload (i.e., half
pairs to be compared) from the 𝑖-th thread in TB𝑏 . Assume the inte-
gers maintained for the 𝑖-th thread in TB𝑏 (resp. TB𝑎) are start𝑏 and
end𝑏 (resp. start𝑎 and end𝑎). We set start𝑎 = start𝑏 + start𝑏+end𝑏

2 ,
end𝑎 = end𝑏 , and end𝑏 = start𝑏 + start𝑏+end𝑏

2 − 1, i.e., the latter half
of tuples remained to be compared is stolen from each thread in TB𝑏 .

Example 13: Continuing Example 12, when TB3 finishes Interval
4 stolen from TB1 in Figure 6(b), it finds no not-yet-processed inter-
vals. However, since TB2 is still evaluating Interval 7, TB3 steals half
remainingworkload from it, saving 1more time unit (Figure 6(c)). □

5.3 GPU collaboration
A GPU server nowadays usually has multiple GPUs connected via
NVLink [49] or PCIe. Scaling blocking tomultiple GPUs is beneficial
for jointly utilizing the computation and storage powers of GPUs.

In pursuit of this, one can split data evenly so that each GPU
handles exactly one [63], or assign multiple partitions to each GPU
in a round-robin manner [68]. These, however, do not work well
since (a) workload can be imbalanced due to skewed execution
times of partitions, (b) pending partitions may wait when multiple
partitions compete for limited PCIe bandwidth or CUDA cores (see
Section 2) and (c) they independently conduct blocking on partitions
and do not effectively handle scenarios where 𝑡𝑖 and 𝑡 𝑗 reside on
different partitions, resulting in elevated false-negative rates. To
address these, one can duplicate tuples in multiple partitions [20,
22], but it incurs both memory and data transfer costs.

In light of these, we present a collaborative approach integrating
partitioning and scheduling strategies, where the former aims at
minimizing data redundancy while reducing false negatives and the
latter prioritizes load balancing and minimizes resource contention.
Data partitioning. A typical method for data partitioning com-
putes a hash key for each tuple based on some attributes and tuples
with same hash key are grouped together. Instead of sacrificing
the accuracy (e.g., using only one hash function) or unnecessarily
duplicating tuples, HyperBlocker applies 𝑠 hash functions to obtain
𝑠 partition-keys, where 𝑠 is the number of children 𝑁𝑐 of the root
node 𝑁0 in the execution tree T ; each hash function is constructed
from the predicate 𝑝 associated with an edge (𝑁0, 𝑁𝑐 ). In this way,



Table 2: Datasets

Dataset Domain #Tuples Max #Pairs #GT Pairs #Attrs #Rules #Partitions

Fodors-Zagat restaurant 866 1.8 × 104 112 6 1 1
DBLP-ACM citation 4591 6.0 × 106 2294 4 10 8
DBLP-Scholar citation 66881 1.7 × 108 5348 4 10 8

IMDB movie 1.5M 8.1 × 1010 0.2M+ 6 10 128
Songs music 0.5M 2.7 × 1011 1.2M 8 10 128
NCV vote 2M 1.0 × 1012 0.5M+ 5 10 512
TFACC traffic 10M 1.0 × 1014 # 16 50 1024

TFACClarge traffic 36M 1.3 × 1015 # 16 50 1024

the predicates that we adopt for data partitioning are those priori-
tized by T , e.g., given 𝑝=sname associated with (𝑁0, 𝑁1) in Figure 4(b),
we hash tuples in𝐷 based on their values in sname. The benefits are
two-fold: (1) According to the construction of T , these hash func-
tions are selective and might be shared by rules, i.e., we can achieve
good hashing with a few hashing functions. (2) We can assign each
tuple a branch ID, indicating the hash function used. Only tuples
that share the same hash function are compared, thereby reducing
redundant computations incurred by multiple hash functions.

Scheduling. HyperBlocker adopts a two-step scheduling strategy.
Initially, data partitions and GPUs are hashed to random locations
on a unit circle [57]. If a partition 𝑃𝑖 is assigned to an ineligible
GPU (where there is no idle core or available PCIe bandwidth), it is
rerouted to the nearest available GPU in a clockwise direction.

Remark. If data partitioning is done by a hashing function from a
similarity predicate 𝑝 , it is possible that ℎ(𝑡1, 𝑡2) |= 𝑝 but 𝑡1 and 𝑡2
reside on different partitions, leading to potential false negatives
in blocking. In this case, a CUDA kernel [7] with local data 𝑃𝑖 can
optionally “pull” partition 𝑃 𝑗 from another kernel and evaluate T
across 𝑃𝑖 and 𝑃 𝑗 . The pull operation retrieves data from locations
outside 𝑃𝑖 , depending on whether 𝑃𝑖 and 𝑃 𝑗 reside on the same GPU.
If 𝑃𝑖 and 𝑃 𝑗 reside on the same GPU, the pull operation is executed
directly without any data transfer. Otherwise, the pull operation
for 𝑃 𝑗 can be carried out using cudaMemcpyPeer() to take the
advantages of high bandwidth and low latency provided by NVLink.

6 EXPERIMENTAL STUDY
We evaluated HyperBlocker for its accuracy-efficiency and scala-
bility. We also conducted sensitivity tests and ablation studies.
Experimental setup. We start with the experimental setting.

Datasets.We used eight real-world public datasets in Table 2, which
are widely adopted ER benchmarks and real-life datasets [3, 4, 9].
Most datasets (except TFACC and TFACClarge) have labeledmatches
or mismatches as the ground truths (GT). For datasets without
ground truths, we assume the original datasets were correct, and
randomly duplicated tuples as noises [30]. The training data con-
sists of 50% of ground truths and 50% of randomly selected noise.

Baselines. As remarked in Section 2, although HyperBlocker is de-
signed as a blocker, it can be used with or without a matcher. Thus,
below we not only compared HyperBlocker against widely used
blockers but also integrated ER solutions (i.e., blocker + matcher).

We compared three distributed ER systems: (1) Dedoop [1, 44],
(2) SparkER [13, 33], (3) DisDedup [8, 20], where DisDedup is the
SOTA CPU-based parallel ER system, designed to minimize commu-
nication and computation costs;Dedoop focuses on optimizing com-
putation cost; SparkER integrates Blast blocking [71] on Spark [12].

Table 3: Comparison with the SOTA DL-based blocker

Method Metric Dataset
Fodors-Zagat DBLP-Scholar DBLP-ACM

DeepBlocker

Rec (%) 100 (+0) 98 (+5) 98 (+4)
CSSR (‱) 15.1 (+14.5) 2.3 (+1.1) 2.2 (+1.8)
Time (s) 6.1 (122×) 72.8 (11.0×) 8.0 (10.0×)

Host Mem. cost (GB) 9.9 (49.5×) 14.0 (23.3×) 10.3 (34.3×)
Device Mem. cost (GB) 0.9 (1.8×) 1.1 (1.6×) 0.9 (1.5×)

HyperBlocker

Rec (%) 100 93 94
CSSR (‱) 0.6 1.2 0.4
Time (s) 0.05 6.6 0.8

Host Mem. cost (GB) 0.2 0.6 0.3
Device Mem. cost (GB) 0.5 0.7 0.6

We also compared four GPU-based baselines: (4) DeepBlocker
[77], (5)GPUDet [31], (6)Ditto [2, 51], (7)DeepBlockerDitto, where
DeepBlocker is the SOTA DL-based blocker, GPUDet implements
well-known similarity algorithms for tuple pair comparison,Ditto is
the SOTA matcher, and DeepBlockerDitto uses DeepBlocker as the
blocker andDitto as the matcher, respectively. Note thatDitto takes
tuple pairs as input, instead of relations/partitions as other methods.
Due to the high cost of Ditto, it is infeasible to feed the Cartesian
product of data to Ditto. Thus, for each tuple in GT, we adopted a
similarity-join method [42] to get the top-2 nearest neighbors, as
its preprocessing step. Denote the resulting baseline by Dittotop2.

Besides, we also implemented several variants: (1)HyperBlocker,
the basic blocker with all optimizations. (2) HyperBlockerDitto, an
improved version that uses HyperBlocker as the blocker and Ditto
as the matcher, respectively. Note thatHyperBlockerDitto is particu-
larly compared againstDittotop2 to show howwe speed up the over-
all ER. (3)HyperBlockernoEPG, a variant without EPG (Section 4). (4)
HyperBlockernoHO that disables all hardware optimizations (Sec-
tion 5). We also compared more designated variants in Exp 3-5.
Rules.We minedMDs using [73] and the number ofMDs is shown
in Table 2. We checked theMDs manually to ensure correctness.
Measurements. Following typical ER settings, we measured the
performance of each method (blocker, matcher, or the combination
of the two) in terms of the runtime and the F1-score, defined as
F1-score = 2×Prec×Rec

Prec+Rec . Here Prec is the ratio of correctly identified
tuple pairs to all identified pairs and Rec is the ratio of correctly
identified tuple pairs to all pairs that refer to the same real-world
entity. All methods aim to achieve high Rec, Prec and F1-scores.
Following [77], we also report the candidate set size ratio (CSSR), de-
fined as |Ca(𝑃 ) |

|𝑃 |× |𝑃 | , when comparingHyperBlockerwithDeepBlocker,
to show the portion of tuple pairs that require further comparison
by the matcher, i.e., the smaller the CSSR, the better the blocker.
Environment. We run experiments on a Ubuntu 20.04.1 LTS ma-
chine powered with 2 Intel Xeon Gold 6148 CPU @ 2.40GHz, 4TB
Intel P4600 PCIe NVMe SSD, 128GB memory, and 8 Nvidia Tesla
V100 GPUs with the widely adopted hybrid cube-mesh topology
(see more in [62]). The programs were compiled with CUDA-11.0
and GCC 7.3.0 with -O3 compiler.DisDedup, SparkER, andDedoop
were run on a cluster of 30 HPC servers, powered with 2.40GHz
Intel Xeon Gold CPU, 4TB Intel P4600 SSD, 128GB memory.
Default parameters. Unless stated explicitly, we used the following
parameters, best-tuned on each dataset via gird search [41]. The
maximum number of predicates in anMD is 10. The number𝑚 of
data partitions is given in Table 2. The sizes of intervals and sliding
windows, namely 𝑛𝑡 and 𝑛𝑤 , are 256 and 1024, respectively. We
adopted a regressionmodel asN , with 3 hidden layers, with 2, 6, and



Table 4: Accuracy & runtime on benchmarks where “*” denotes that integrating HyperBlocker with Ditto does not improve the
F1-score and thus we report the result of HyperBlocker, and “/” denotes that the F1-score cannot be computed within 3 hours.

Method Backend Category
DBLP-ACM IMDB Songs NCV

F1-score Time (s) F1-score Time (s) F1-score Time (s) F1-score Time (s)

SparkER CPU Blocker 0.77 (-0.17) 11.0 (13.8×) 0.31 (-0.65) 242.9 (6.8×) 0.08 (-0.72) 203.4 (15.2×) 0.26 (-0.66) 229.3 (49.8×)
GPUDet GPU Blocker 0.92 (-0.02) 20.1 (25.1×) 0.94 (-0.02) 323.8 (9.1×) 0.80 (+0) 404.8 (30.2×) 0.90 (-0.02) 1252.6 (272.3×)

DeepBlocker GPU Blocker 0.98 (+0.04) 8.3 (10.4×) / >3h / >3h / >3h
HyperBlockernoEPG GPU Blocker 0.94 (+0) 9.9 (12.4×) / >3h 0.80 (+0) 1904.1 (142×) 0.92 (+0) 2408.6 (523.6×)
HyperBlockernoHO GPU Blocker 0.94 (+0) 9.5 (11.9×) 0.96 (+0) 472.6 (13.2×) 0.80 (+0) 45.0 (3.4×) 0.92 (+0) 35.9 (7.8×)
HyperBlocker GPU Blocker 0.94 0.8 0.96 35.7 0.80 13.4 0.92 4.6

Dedoop CPU Blocker+Matcher 0.90 (-0.08) 59.4 (9.4×) 0.67 (-0.29) 534.0 (15.0×) 0.80 (-0.08) 7643.4 (6.5×) / >3h
DisDedup CPU Blocker+Matcher 0.45 (-0.53) 94.0 (14.9×) 0.67 (-0.29) 644.0 (18.0×) 0.06 (-0.82) 917.0 (0.8×) / >3h
Dittotop2 GPU Blocker+Matcher 0.98 (+0) 9.0 (1.4×) 0.79 (-0.17) 6741.2 (188.8×) 0.88 (+0) 2308.6 (2.0×) 0.97 (+0.03) 381.8 (2.1×)

DeepBlockerDitto GPU Blocker+Matcher 0.99 (+0.01) 12.4 (2.0×) / >3h / >3h / >3h
HyperBlockerDitto GPU Blocker+Matcher 0.98 6.3 *0.96 *35.7 0.88 1179.0 0.94 180.6

1 neurons, respectively. We used ReLU [60] as the activation func-
tion and Adam [43] as the optimizer. We used one GPU by default.

Experimental results. For lack of space, we report our findings
on some datasets as follows; consistent on other datasets.

Exp-1: Motivation study.We motivate our study by comparing
HyperBlocker, our rule-based blocker, with the SOTA DL-based
blocker DeepBlocker (Table 3), where the bracket next to a metric
of DeepBlocker gives its difference or deterioration factor to ours.
DL-based blocking vs. rule-based blocking. We report recall, CSSR,
runtime, and (host and device) memory for both methods. Consis-
tent with [77], for DeepBlocker, each tuple was paired with top-𝐾
similar tuples as initial candidate pairs, where 𝐾 = 5 on all datasets
(except DBLP-Scholar where 𝐾 = 150). As remarked in Section 1,
both methods have strengths. (1) HyperBlocker effectively reduces
the number of pairs to further compare while maintaining high
Rec (>93%), e.g., its average CSSR is 5.8‱ less than DeepBlocker.
(2) HyperBlocker is at least 10× faster. (3) HyperBlocker consumes
less memory than DeepBlocker, e.g., the host memory it consumes
is at least 23.3× less than DeepBlocker. (4) Note that the Rec of
HyperBlocker is slightly lower than DeepBlocker, which is accept-
able given its convincing speedup and memory saving, since the
primary goal of a blocker is to improve the efficiency and scalability
of ER, not to improve the accuracy of ER (the goal of a matcher).

Exp-2: Accuracy-efficiency.We report the F1-scores and runtime
of all blockers and integrated ER solutions (i.e., blocker + matcher)
in Table 4. Here DeepBlocker pairs each tuple with its top-2 tuples
as initial candidate pairs. For all blockers, the bracket next to
each F1-score (resp. time) gives the difference (resp. slowdown)
in F1-score (resp. time) to HyperBlocker (marked yellow). For a
fair comparison, the brackets of each integrated ER solution give
the difference compared with HyperBlockerDitto (marked yellow).

Accuracy.Wemainly analyze the F1-scores ofHyperBlocker, which
are consistently above 0.8 over all datasets. Besides, we find:

(1)HyperBlocker outperforms CPU-based distributed solutions, e.g.,
it achieves up to 0.29, 0.74, and 0.72 improvement in F1-score against
Dedoop,DisDedup, and SparkER, respectively, even though the for-
mer two are integrated with matchers. This is because these solu-
tions exploit data partition-based parallelism only, which may lead
to false negatives if matched tuples are put into different partitions.

(2) Compared with the four GPU-based baselines,HyperBlocker has
comparable accuracy. In particular, it even beatsDittotop2, the SOTA
matcher, by 0.17 F1-score in IMDB. This shows that even without
a matcher, HyperBlocker alone is already accurate in certain cases.
Moreover, DeepBlocker and DeepBlockerDitto struggle to handle
large datasets. When facing million-scale data, they cannot finish in
3 hours. This again motivates the need for rule-based alternatives.
(3) Combing HyperBlocker with Ditto, HyperBlockerDitto further
boosts the accuracy, achieving the best F1-score in Songs. Neverthe-
less, DL-based solutions still have the best F1 scores in other cases,
justifying that none of them can dominate the other in all cases.

(4) HyperBlockernoEPG and HyperBlockernoHO are as accurate as
HyperBlocker, since they only differ in the optimizations.
Runtime. We next report the runtime. (1) HyperBlocker runs sub-
stantially faster than all baselines, e.g., it is at least 6.8×, 9.1×,
10.4×, 15.0×, 18.0×, 11.3× and 15.5× faster than SparkER, GPUDet,
DeepBlocker, Dedoop, DisDedup, Ditto, and DeepBlockerDitto re-
spectively. (2) HyperBlockerDitto is slower than HyperBlocker
as expected since it performs additional matching. Nonetheless,
HyperBlockerDitto is at least 1.4× (resp. 2.0×) faster than Dittotop2
(resp.DeepBlockerDitto). Given its comparable F1-score, we substan-
tiate our claim (Section 1) that blocking is a crucial part of the overall
ER process. (3) HyperBlocker is at least 12.4× and 3.4× faster than
HyperBlockernoEPG and HyperBlockernoHO, respectively, verify-
ing the usefulness of execution plans and hardware optimizations.
Impact of𝑚. Figure 7 (a) reports how the number𝑚 of data parti-
tions affects the recall (the right y-axis) and the runtime (the left
y-axis) on NVC. As shown there, both metrics of HyperBlocker
decreases with increasing𝑚. This is because when there are more
partitions, both the number of pairwise comparisons and the candi-
date matches that can be identified in each partition are reduced.

Exp-3: Scalability.We tested our scalability under multi-GPUs sce-
narios. The default number of GPUs is 4 in this set of experiments.
Varying |𝐷 |/#GPUs.We varied the scale factor of 𝐷 in TFACClarge
and tested HyperBlocker with different numbers of GPUs in Fig-
ure 7(b).HyperBlocker scales well with data sizes, e.g.,with 8 GPUs,
it takes 1604s to process 36M tuples; this is not feasible for both CPU-
and GPU-based baselines. When the number of GPUs changes from
1 to 8,HyperBlocker is 2.6× faster, sinceHyperBlockermainly accel-



(a) NVC: Impact of𝑚 (b) TFACC-Large: Varying #GPUs (c) IMDB: Impact of schedulers (d) TFACC: Varying |𝜑 |

(e) TFACC: Varying |Δ | (f) DBLP-ACM: Varying noise% (g) More ordering strategies (h) Ablation study
Figure 7: Efficiency, scalability, and effectiveness of HyperBlocker

erates the operations on GPUs, while other parts of the system (e.g.,
I/O and data partitioning) may also limit the overall performance.
Impact of task schedulers.We tested the impact of task schedulers,
by comparing HyperBlocker with two variants, that uses EvenSplit
and RoundRobin for scheduling (Section 5.3), respectively, by vary-
ing |𝐷 | in Figure 7(c). HyperBlocker works better than the two, e.g.,
when the scale factor is 100%, HyperBlocker is 1.3× and 2.2× faster
than RoundRobin and EvenSplit, respectively, since both variants
may limit CUDA’s ability to dynamically schedule tasks.

Exp-4: Tests on EPG (Section 4).We evaluated EPG (and its offline
model N ) and justified the need of effective evaluation orders.
Varying |𝜑 |.We tested the number |𝜑 | of predicates in eachMD 𝜑

against HyperBlockernoPO that evaluates predicates in a random
order in TFACC (Figure 7(d)). (1) HyperBlocker takes longer with
larger |𝜑 |, as expected. (2) HyperBlocker is feasible in practice, e.g.,
when |𝜑 | = 10, it only takes 135.2s. (3) On average, HyperBlocker
shows 32.5× speedup to HyperBlockernoPO. This justifies the im-
portance of predicate ordering in efficient rule-based blocking.
Varying |Δ|. We evaluated the impact of the number |Δ| of MDs
in Δ in Figure 7(e), where HyperBlocker takes longer with more
rules, e.g., it takes 523.2s when |Δ| = 50, and consistently beats
HyperBlockernoRO, a variant that evaluates rules in a random order.
Shallow model N .We evaluated the performance of N in EPG by
(1) its sensitivity to noises, (1) the resulting predicate ordering,
compared with the “ground truth” ordering derived from actual
costs, and (3) the speedup of estimating the actual costs using N .
(1) Given a noise ratio 𝛽%, we injected 𝛽% noises to training data of
N , to disturb its distribution, and report RMSE (Root Mean Squared
Error), a widely used metric for regression, in Figure 7(f) (the left
y-axis). The RMSE of N does not degrade much when 𝛽% = 20%.
However, when 𝛽% continues to increase, N becomes inaccurate.
(2) We compared the predicate ordering estimated via N with the
ground truth one using NDCG (Normalized Discounted Cumula-
tive Gain [78]), a widely used metric for evaluating ranking, in
Figure 7(f) (the right y-axis). The result shows that the two order-
ings are close (i.e., NDCG is high), even when the noise ratio is 40%.
(3) The average time for computing the actual cost of a predicate

is 0.8s on DBLP-ACM, as opposed to 0.007s for the estimated cost.
More ordering strategies. To justify the need for both cost and effec-
tiveness, we compared two more strategies using designated MDs:
(1) COrder, that prioritizes cheap predicates (e.g., always evaluate
equality first, a common strategy in existing DBMS, as remarked in
Section 4) and (2) SOrder, that prioritizes selective predicates. For
all orders, we applied the same partitioning strategy (Section 5.3). To
better visualize the effects on different datasets, we report the slow-
down percentages in Figure 7(g). SOrder (resp. COrder) is on av-
erage slowed by 733.6% (resp. 38.2%) compared with HyperBlocker.
This said, we strike a balance between the two strategies.

Exp-5: Tests on hardware optimizations (Section 5). Finally, we
conducted an ablation study on hardware optimizations and report
the runtime statistics. We compared three baselines: (1) noSeq, that
recursively implements DFS without sequential execution paths, (2)
noPSW that assigns continuous intervals to each TB without paral-
lel sliding windows, and (3) noStealing, where GPUs automatically
schedule a new TB whenever one is done, without task stealing. To
better visualize the effect, below we used 𝐷 as a single partition.
Ablation study.We show the slowdown percentages compared to
HyperBlocker in Figure 7(h). We find: (1) noSeq is much slower
thanHyperBlocker, since recursive DFS is not efficient on GPUs. (2)
noStealing and noPSW are on average 43.1% and 28.8% slower than
HyperBlocker, respectively, justifying the use of both optimizations.
Runtime statistic.We adopted NSight [10], a profiling tool provided
by NVIDIA, and report wait stalls (i.e., the number of clock cycles
that the kernel spent on waiting), branch efficiency (i.e., the ratio of
correctly predicted branch instructions), and the average number
active threads per warp in TFACC (Table 5). HyperBlocker performs
the best in all metrics. The reasons are twofold: (1) while divergence
is sometimes unavoidable, a recursive DFS exacerbates it (e.g., due
to stacking), leading to more idle threads; and (2) the workloads
can be imbalanced, e.g., without parallel sliding windows, noPSW
incurs a larger number of wait stalls compared with HyperBlocker.

Summary.We find the following. (1) HyperBlocker outperforms
prior blockers and integrated ER solutions. It is at least 6.8×, 9.1×,
10.4×, 15.0×, 18.0×, 11.3× and 15.5× faster than SparkER, GPUDet,
DeepBlocker, Dedoop, DisDedup, Ditto, and DeepBlockerDitto



Table 5: Runtime info ( ↑: higher is better vs. ↓: lower is better)

Method
↓ Wait stalls (in

terms of clock cycles)
↑ Branch
efficiency

↑ Average number of
active threads per warp

noSeq 4.25 89.9% 14.45
noPSW 13.79 96.3% 25.59

noStealing 4.11 96.2% 27.62
HyperBlocker 4.07 96.4% 28.21

respectively. (2) By combining HyperBlockerwith Ditto, we save at
least 30% of time with comparable accuracy. (3)HyperBlocker beats
all its variants (except HyperBlockerDitto) in both runtime and
accuracy, justifying the usefulness of various optimizations: (a) EPG
specifies an effective evaluation order, improving the runtime by at
least 12.4× and (b) the hardware optimizations on GPUs speedup
blocking by at least 3.4×. (4) HyperBlocker scales well with various
parameters, e.g., it completes blocking in 1604s on 36M tuples.

7 RELATEDWORK
We categorize the related work in the literature as follows.
Blocking algorithms. There has been a host of work on the block-
ing algorithms, classified as follows: (1) Rule-based [20, 35, 39, 44,
64], e.g., [35] creates data partitions and then refines candidate pairs
in every partition, by removing mismatches with similarity mea-
sures or length/count filtering [55]. (2) DL-based [24, 40, 77, 79],
which cast the generation of candidate matches into a binary classi-
fication problem, where each tuple pair is labeled “likely match” or
“unlikely match”, e.g., [77] adopts similarity search to generate can-
didate matches for each tuple based on its top-𝐾 probable matches
in an embedding space. DL-based blocking and rule-based blocking
share the same goal, but are different in their approaches, where
the former focuses on learning the distributed representations of
tuples, while the latter emphasizes explicit logical reasoning.

Although we study rule-based blocking, we are not to develop
another blocking algorithm. Instead, we provide a GPU-accelerated
blocking solution. As a testbed, we use MDs as our blocking rules,
which subsume many existing rules [46, 64] as special cases.
Parallel blocking solvers. Several parallel blocking systems have
been proposed, e.g., [16, 20, 21, 26, 30, 33, 44, 45, 66, 76], mostly un-
der MapReduce [20, 33, 44] or MPC [22, 30, 76], which aim at scaling
to large data with a cluster of machines. DisDedup [20] uses a tri-
angle distribution strategy to minimize both comparisons and com-
munication over Spark[12]. Minoan [26] runs on top of Spark and
applies parallel meta blocking [25] to minimize its overall runtime.

This work differs as follows. Unlike MapReduce-based systems,
which split data at the coordinator and execute tasks on workers,
HyperBlocker focuses on collaborating GPUs and CPUs, to promote
better resource utilization and massive parallelism. HyperBlocker
is designed for the shared memory architecture of GPUs and is fine-
tuned to exploit GPU hardware for rule-based blocking. To the best
of our knowledge, incorporating both GPU and CPU characteristics
has not been considered in prior parallel blocking solutions.
GPU-accelerated techniques. GPUs have been used extensively
to speed up the training of DL tasks. Recent works exploit GPUs
to accelerate data processing, e.g., GPU-based query answering
[23, 36, 72] and similarity join [42, 53, 61]. Closer to this work
are [42, 53] which leverage GPUs for similarity join, since blocking
can be regarded as a similarity join problem under the assumption

that two tuples refer to the same entity if their similarity is high.
Similarity join is often served as a preprocessing step of ER.

In contrast, HyperBlocker aims at expediting rule-based block-
ing, addressing challenges in rule-based optimization that are not
incurred in similarity join. The closest work is GPUDet [31], which
employs GPUs to expedite similarity measures. HyperBlocker dif-
fers fromGPUDet, in its data/rule-aware execution plan designated
for rule evaluation, beyond similarity measures. It also incorporates
hardware-aware optimizations for improving GPU utilization.

Query optimizations. Also related to EPG is query optimization
in DBMS [48, 56, 58, 67, 69, 70], which uses sampling, statistics, or
profiling to get execution plans via cost and cardinality estimation.
Since rule-based blocking is in DNF, with arbitrary similarity com-
parisons and multiple rules, EPG is particularly related to the opti-
mizations onDNF SQLswith UDFs [32, 38, 70, 74], e.g., [74] analyzes
Python UDFs to reorder operators based on data/operation types.

EPG differs from existing query optimizations: (1) EPG optimizes
the execution, no matter what comparisons (e.g., equality or sim-
ilarity) are adopted, while many DBMS optimizers struggle when
similarity comparisons are encoded as UDFs, e.g., SQL Server [14]
restricts UDFs to a single thread, and PostgreSQL [11] treats UDFs
as black boxes. This said, EPG solves a more specialized problem, be-
yond general query optimization, for arbitrary comparisons. (2) It is
hard for most optimizers to accurately estimate the runtime perfor-
mance of UDFs [67], which may depend on specific measures/data,
while we consider the time/selectivity of predicates, using learned
and LSH-based models for accurate estimation. (3) EPG employs
tree structures and bitmaps, to effectively handle the disjunction
logic behind blocking and to reuse computation, while traditional
DBMS may be forced to perform full scan when evaluating OR op-
erations. (4) EPG produces a data partitioning scheme based on the
execution tree as a by-product, to coordinate across multiple GPUs.

8 CONCLUSION
The novelty ofHyperBlocker consists of (1) a pipelined architecture
that overlaps the data transfer from/to CPUs and the operations on
GPUs; (2) a data-aware and rule-aware execution plan generator
on CPUs, that specifies how rules are evaluated; (3) a variety of
hardware-aware optimization strategies that achieve massive paral-
lelism, by exploiting GPU characteristics; and (4) partitioning and
scheduling strategies to achieve workload balancing across multiple
GPUs. Our experimental study has verified that HyperBlocker is
much faster than existing CPU-powered distributed systems and
GPU-based ER solvers, while maintaining comparable accuracy.

There are some future topics: (a) give a different plan on each
partition; (b) explore the materialization of partial evaluation results
to avoid divergence and (c) investigate whether EPG and traditional
optimizers can complement/enhance each other.
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