
DLB: Deep Learning Based Load Balancing

Xiaoke Zhu§∗, Qi Zhang†∗, Taining Cheng§, Ling Liu‡, WeiZhou§∗∗ and Jing He§∗∗
Yunnan University§, IBM Thomas J. Watson Research†, Georgia Institute of Technology‡

Abstract—In this paper, we introduce DLB, a Deep Learning
based load Balancing mechanism, to effectively address the data
skew problem. The key idea of DLB is to replace hash functions
in the load balancing mechanisms with deep learning models,
which are trained to be able to map different distributions
of workloads and data to the servers in a uniformed manner.
We implemented DLB and deployed it on a practical Cloud
environment using CloudSim. Experimental results using both
synthetic and real-world data sets show that compared with
traditional hash function based load balancing methods, DLB
is able to achieve more balanced mappings, especially when the
workload is highly skewed.

Index Terms—load balancing, consistent hashing, neural
networks, cloudsim

I. INTRODUCTION

With the development of Cloud computing, companies are

becoming increasingly interested in migrating their services

and data to Cloud platforms, such as AWS [1], IBM

Cloud [2], Google Cloud [3], and Microsoft Azure [4],

on which the effectiveness of load balancing is of great

importance. Maintaining a balanced workloads benefits the

cloud service provider by not only increasing the utilization

of their resources, but also improving the quality of services.

Currently, hash function based load balancing mechanisms are

the dominant design, in which hash function based approaches

are used to determine which server a workload needs to be

assigned to.

A hash function is able to generate balanced results when

the input data is uniformly distributed. However, the real-world

data sets often exhibit remarkable skew. For instance, analysis

of air traffics and online human behavior data sets [5], [6]

revealed that such data usually follows different power law

distributions. When the input data is skewed, the output of

the hash function will also be skewed. Therefore, using a

hash function in a load balancing mechanism can result in

unbalanced workloads assignment when data skew exists in

the input. Even worse, such unbalanced workloads could

seriously harm the performance of applications and services

running on distributed platforms. Elaheh Gavagsaz and et al.

[7] demonstrated that traditional join algorithms based on

MapReduce are not efficient when working with skew data,

Joanna Berlinska and et al. [8] also revealed that the uneven

distribution of the keys might cause imbalance computation

This work was supported in part by the National Natural Science Foundation
of China under Grant 61762089, Grant 61663047, Grant 61863036, Grant
61762092 and Open Foundation of Key Laboratory in Software Engineering
of Yunnan Province under Grand 2020SE310∗ made equal contribution to this work.∗∗ to whom correspondence should address {zwei,hejing}@ynu.edu.cn

� � �� �� �� �� �� ��

���

���

���

���

���

�
��
�
�
�
�
�
�
�	

�

��

���

��

	
���

�	��������

������������

������������

Fig. 1: Data skew for different hash functions

completion time among different MapReduce tasks, which

eventually prolonged execution of the whole MapReduce job.

There are several reasons why hash functions do not

perform well on skewed data sets. First, the hash function

was originally designed to perform fast index [9] (i.e.,

indexing with O(1) time complexity), compression [10]

(i.e., compressing a large input in a deterministic way),

cryptography [11] (i.e., irreversible mapping from inputs

to outputs) and etc., thus dealing with skewed data was

not considered as one of its primary design goals. Second,

although there have been efforts, such as BKDR hash [12],

MURMUR hash [13], and Python hash [14], to enhance

the hash functions to better handle the skewed data, their

effectiveness are not satisfying. As shown in Figure 1, we

manually generate a skew data set under normal distribution

as the inputs and use the above mentioned three hash functions

to map these inputs to 32 bins. After that, the bins are sorted

by the number of inputs assigned to it. Ideally, the lines in this

figure should be flat, which means different bins are taking a

similar amount of inputs if the hash functions are able to map

the input to a uniformed distribution. However, the lines in the

figure are all in an increasing trend. The numbers of inputs

being assigned to different bins vary from 280 to 360, which

are significantly unbalanced.

The availability of big data and the rapid advance of

AI techniques provide unique opportunities to rethink the

design of load balancing mechanisms by making them perform

better on skew data. The key idea is as follows: instead

of using a hash function, learned models can be applied to

determine where the inputs should be mapped to the hash

circle. Although model training is required beforehand, this

approach is practical and has several advantages compared

to traditional hash based methods. First, the capability and

affordability of collecting large amount of data nowadays

648

2021 IEEE 14th International Conference on Cloud Computing (CLOUD)

2159-6190/21/$31.00 ©2021 IEEE
DOI 10.1109/CLOUD53861.2021.00083

20
21

 IE
EE

 1
4t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
lo

ud
 C

om
pu

tin
g

(C
LO

U
D)

 |
 9

78
-1

-6
65

4-
00

60
-2

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CL
O

U
D5

38
61

.2
02

1.
00

08
3

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on June 23,2024 at 03:14:30 UTC from IEEE Xplore. Restrictions apply.

provides the potential to train data distribution aware models

for load balancing mechanisms. Second, the distribution of

data collected by a specific company or organization for a

given task is usually consistent, which is demonstrated by

analysis results from [5], [6], [15]. This shows the feasibility

of using historical information to deal with future workloads.

Third, when appropriately trained, the output of a learned

model can be uniformly distributed even when the input data

set is highly skewed.

In this paper, we propose DLB, which uses deep learning

models to effectively address the data skew problem in

existing load balancing mechanisms. Researchers [16]–[19]

have explored the possibility of partially replacing existing

data structures and algorithms with deep learning models.

For example, Tim Kraska and et al. [16] introduced the

hash model index, which reduces the total number of hash

conflicts over map data set by learning a CDF(Cumulative

distribution function) at a reasonable cost. However, there are

still remaining challenges to leverage deep learning models

to improve the effectiveness of load balancing mechanisms.

On the one hand, how to design a neural network that

can converge quickly during the training while also being

able to effectively mapping large volumes of inputs to a

uniformly distributed space. On the other hand, how to balance

between the complexity and the expressiveness of the model.

Concretely speaking, a simple neural network can be easily

trained, but it will not be able to map large amount of inputs

into a uniformly distributed space without incurring significant

conflicts. While a complex model can reduce the mapping

conflicts, but it cannot be trained easily due to gradient

dissipation and explosion problems.

In order to solve these challenges, DLB is designed in a way

that, instead of using a single end-to-end model, it organizes

a set of models into a hierarchical architecture. In such an

architecture, the models are organized in different connected

layers. For a specific input, it will go through one model in

each layer, while the model in the previous layer specifies

which model in the next layer needs to be invoked. The final

output will be the position on the hash circle for this input.

Since the distribution of input data is not guaranteed to stay

the same, DLB also continuously monitors the actual load

distribution of all the servers to make sure no server becomes

a hotspot. Compared with traditional hash function based load

balancing mechanisms, such as Consistent Hashing [20] and

Consistent Hash with Bound Load [21], DLB is able to map

the input data sets to a uniformly distributed space even when

they are highly skewed. In addition, compared with a single

but complex end-to-end model, a hierarchical design makes

each model converge more quickly during the training.

The main contributions of this paper are as follows:

• We designed DLB, a deep learning based load balancing

mechanism which solves the data skew problem by

replacing the hash function with deep learning models.

• We implemented DLB and deployed it in a practical

environment using CloudSim [22], which enables

modeling and simulation of real Cloud computing

systems and application provisioning environments.

• The effectiveness of DLB is measured by using both

synthetic and real-world data sets under different

distributions.

II. RELATED WORK

Load balancing mechanisms are widely used in distributed

computing environment to balance the workloads among

different servers, and the effectiveness of such mechanisms is

critical to the overall performance and service quality of the

distributed platforms. Therefore, how to design an effective

load balancing mechanism has attracted the interest of many

researchers. In this section, we introduce related researches in

this area, while at the same time, we also discuss the existing

efforts on trying to use neural network based learned data

structures to improve the performance of traditional systems.

Hashing based load balancing. As one of the mainstream

load balancing mechanisms, Consistent Hashing(CH) [23]

proposed by Karger and et al. has been widely adopted. Ideally,

by using a randomized hash function, both balls and bins can

be assigned to the hash circle in a uniformed way, so that

different bins will be able to hold the similar number of balls.

However, it is usually not the case in the real-world due to the

existence of data skew in the inputs. There have been many

efforts to address this issue [24]–[27]. For example, David

R. Karger and el al. [20] tried to enable CH to generate more

balanced results by using virtual bins which are replicas of real

bins in hash space, and one real host can be correspondent

to several virtual bins. The authors showed that the overall

load balancing performance could be improved accordingly.

To further address the data skew problem in load balancing,

Johan Lamping and Eric Veach proposed jump Consistent

Hashing [25], which works by computing when its output

changes as the number of bins varies. In this approach, the

hash value of a ball is not randomly generated, but acquired

according to the probability determined by the number of

existing bins. Also, whenever a new ball is added, the hash

value of the existing balls needs to be recomputed according to

the a predefined probability. Roberto Grossi and et al. designed

Round-Hashing [26]. Thaler and Ravishankar proposed [24]

Rendezvous hashing algorithm, for a given ball q and n bins,

it applies a hash function to the all the pairs {q, pi}, in which

i ∈ {1...n}, and assigns the ball to the bin that can lead to

largest hashing result.

Neural network based learned data structures. This

thread of research explores the potential of utilizing the

neural network based learned data structures to improve the

performance of traditional systems [16], [17], [19], [28].

Among them, Tim Kraska and et al. proposed learned B-tree,

learned hash, and learned bloom filter structure [16] to improve

the indexing performance of traditional structure by learning

the distribution from the historical data. Xiang and et al. [17]

proposed a LSTM-based inverted index structure.

Different from the above-mentioned researches, instead

of improving the effectiveness of traditional hash functions,

649

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on June 23,2024 at 03:14:30 UTC from IEEE Xplore. Restrictions apply.

our DLB approach takes the advantages of both Consistent

Hashing and deep neural network. In DLB, a deep learning

model based on the historical data is trained, and then used to

map the newly coming data to a uniformly distributed space

even when such data is skewed.

III. DLB: DEEP LEARNING BASED LOAD BALANCING

In this section, we discuss the details of DLB design. The

goal of load balancing is to uniformly distribute different

workloads on multiple servers so that no server will become

the hotspot. A hash function, being the core building block

in most of the existing load balancing mechanisms, can be

considered as a black box that takes an input and maps it

to a position on the hash circle. Therefore, we propose a

Deep Learning based load Balancing mechanism named DLB,

which replaces the hash functions with deep learning models

to fulfill the same mapping task. We observe that this approach

is able to work well on skew data and provide more balanced

workload distribution compared with traditional hash function

based load balancing mechanisms.

A. Design

1) Hierarchical models: As discussed earlier, a hash

function in a load balancing mechanism can be replaced by a

deep learning model, and a well trained model can generate

uniformly distributed outputs even when the inputs are highly

skewed. A natural question to ask is which model should be

used. In load balancing mechanisms such as CH, the inputs

are usually mapped into a large space (e.g., 232) to avoid

conflicts. If we consider each slot in this output space as a

class, what the model needs to achieve is actually classifying

each input into one of these different classes. This actually

turns the mapping task into a classification task. Since the

space of this classification so large, training a single model

for such a task will be really difficult.

Therefore, we propose an architecture of hierarchical

models in DLB to address this problem. As shown in Figure

2, instead of using one single model, multiple models are

involved to solve this classification problem. The models are

organized into a hierarchical structure with different connected

layers. To find out the position that an input should be mapped

to on the hash circle, each input will need to go through a

model in each layer. The whole mapping procedure can be

divided into 4 stages, and details of each stage are described

as follows:

Input stage. Various formatted features can be observed as

the inputs of load balancing mechanisms when a hash function

is used, being it an ID string of a user or a MD5 value of a

file. However, these features need to be converted so that they

can be consumed by a neural network model. Therefore, the

goal of this stage is to pre-process the input data, such as

converting strings or numerical data into vectors, so that they

can be directly used as inputs of a neural network model.

Disperse stage. The main strategy used in this stage

is divide and conquer. Concretely speaking, the disperse

stage consists of multiple models which are organized in a

hierarchical architecture(i.e., a tree structure). All the models

in this architecture work collaboratively to figure out which

position on the hash circle a given input should be placed.

Since the space of the final hash circle is usually very large, the

motivation of this design is to divide a complex classification

task, which is supposed to deal with a large output space,

into multiple smaller tasks. In this way, the original complex

classification problem can be conquered more effectively by

solving these smaller problems. In other words, with such a

hierarchical architecture, each model only needs to tackle a

much simpler classification problem with only a subset of the

whole output space. As shown in Figure 2, the models in this

stage are split into multiple layers. The root model(i.e. the

one on the left most in Figure 2) takes the input data set and

determines which model in the next layer needs to be invoked,

while the models in the other layers of the disperse stage go

through the same procedure using their corresponding assigned

input.

Mapping stage. Models involved in this stage are located in

the last layer of the hierarchical architecture. Different from

the models in the disperse stage that select which model in

the next layer needs to be used, each model in the mapping

stage is responsible for generating the position of a given input

in its sub-circle. Different models in the mapping stage are

correspondent to different sub-circles, which are actually areas

on the hash circle, while they collectively cover the whole hash

circle.

Join stage. Since the output of each model in the mapping

stage is a position on each model’s own sub-circle, another

layer is needed to translate such a local position on a sub-circle

into a global position on the hash circle. In order to create

the continue hash circle, sub-circle of different mapping

stage models are connected sequentially, thus the final global

position Posqi of input qi on the hash circle is established by

Eq 1.

Posqi = μi + (model id− 1)t (1)

model id is the ID of the model in the mapping stage

starting from 1.

2) Server Management: In traditional load balancing

mechanisms such as CH, both workloads and servers are

mapped to the hash circle by hash functions, and a workload

is assigned to its clockwise closest server. In DLB, a deep

learning model is used to map a workload to a position on

the hash circle, while a deterministic approach is used to map

the servers. Although server mapping can also be done by

using learned models, it is not necessary since the number

of servers is usually much smaller than that of the workloads

and a deterministic approach is good enough to evenly map

the servers to the hash circle.

Similar to traditional load balancing mechanisms, DLB

assigns a workload to a server in a clockwise manner. Since

DLB is able to uniformly map the workloads to the hash circle,

using a deterministic server mapping approach can achieve

well balanced workload distribution. Concretely speaking,

when a new server is added, DLB will add the server to

650

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on June 23,2024 at 03:14:30 UTC from IEEE Xplore. Restrictions apply.

Input Stage Join StageDisperse Stage

Model 1.1

Mapping Stage

Pos

Keys
IP Addresses

File ID
Objects

local-pos

232-1

Split layer 1 Split layer 2

Model 2.1

Model 2.2

Model 2.3

Model (+1).1

Model (+1).2

Model (+1).3

Fig. 2: The hierarchical model architecture in DLB

a place such that this server can evenly divided the largest

sub-circle on the hash circle. When an existing server becomes

unavailable, the workloads on this server will be reassigned to

its clockwise next server. Similar to Consistent Hashing with

bounded load(CHBL), each server in DLB has a load threshold

ε. A new workload can be assigned to a server only if the load

of this server will not exceed ε. Otherwise, other servers need

to be considered.

B. Training

In this sub-section, we discuss the considerations of how

to train the hierarchical models mentioned above from two

aspects.

First, how to label the training data. Given historical cluster

access data, to make sure that the models will not generate

skew output when the training data is skewed. Meanwhile,

Since the hierarchical architecture includes multiple models

in different layers, for each input, it needs to be labeled for

each model. We discuss the labeling process for DLB from two

aspects: creating labels used in the mapping stage models as

well as in the disperse stage models. The difference between

these two types of labels is that the former one represents

positions on a hash circle, while the latter one is correspondent

to the ID of the model in the next layer.

The method to create labels for DLB is depicted in

Algorithm 1. tagφ(ki) generates the label of ki in layer φ.

A formal description of tagφ(ki) is shown in Eq 2, in which

Cφ represents the the number of models in the φth layer.

tagφ(ki) = j j ∈ [1 : Cφ+1] (2)

subject to:
T

Cφ+1
∗ (j) ≤ labelmi ≤ T

Cφ+1
∗ (j + 1)

Second, we also describe what loss function is used in the

training process. The loss value used in the training is defined

as Loss =
∑

φ∈(1,Φ+1)

∑
n∈(1,mφ)

(On
φ − labelnφ)

2, which is

the sum of the loss value of each model in the hierarchical

architecture. We refer the output of n-th model in the φ-layer

to as On
φ , labelnφ to represent the corresponding labels, while

mφ as the number of models in the φth layer.

Algorithm 1 Labeling DLB training data

Input: K - key list of balls

Input: T - number of positions on the hash circle

Input: Φ - number of layers in disperse stage

Input: labelsi - labels for the models in the ith layer

Input: indexof(ki,K) - index of the element ki in list K
Input: tagφ(ki) - label of ki for the model in φth layer.

Initialize: Labelsi ← {}(i ∈ (1,Φ+ 1))
1: Ks ← Sort(K)

2: for ki in K do //Create labels for models in mapping stage

3: label ← indexof(ki,K) ∗ (T/sizeof(K))
4: labelsΦ+1 ← LabelsΦ+1 ∪ label
5: end for
6: for φ in Φ do //Create labels for models in disperse stage

7: for ki in K do
8: label ← tagφ(ki)
9: labelsφ ← Labelsφ ∪ label

10: end for
11: end for
12: return {labels1, ..., labelsΦ+1}

IV. EVALUATION

In this section, we compare the effectiveness of load

balancing between DLB and the following widely used and

classical load balancing approaches:

• Consistent Hashing(CH). CH hashes the balls and bins

into a unit circle, and uses the hash values to create a

circular order of balls and bins. The palcement decision

are all based on the relatevie location among balls and

bins.

• Consistent Hashing with Bounded Load(CHBL). CHBL

is similar to CH, except that it uses a parameter to try

to keep the balls uniformly distributed among different

bins.

In our design each sub model of DLB has 3 fully connected

layer, and each layer has 8, 32, 64 neuros respectively. We

use Adam [29] with learning rate of 0.01 to train all the

sub models. For CH and CHBL, we also combine them with

different hash implementations, such as BKDR Hash [12],

Python Hash [14], and Murmur Hash [13].

651

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on June 23,2024 at 03:14:30 UTC from IEEE Xplore. Restrictions apply.

(a) Log-normal distribution

(b) Normal distribution

(c) Uniform distribution

Fig. 3: Compare the effectiveness of different load balancing mechanisms in a practical Cloud environment created by CloudSim.

A. Setup

In this subsection, we describe the experimental setup,

including the hardware and software environment, as well as

the data sets and metrics used throughout the measurements.

1) Environment: The experiments are carried on a machine

with 64GB main memory and one 2.6GHZ Intel(R) i7

processors. Each test is run 10 times and the median of the

results are shown in this section.

2) Data sets: In order to measure how different

distributions of the input data set can affect the effectiveness

of DLB, the synthetic data sets used in Section IV-B are

generated under three most commonly observed distributions:

uniform distribution, normal distribution, and log-normal

distribution. Each distribution has two data sets, one for

testing and the other for training. Each data set consists of

20, 000, 000 balls while each ball is a double-precision digit

which represents a key of client workload in load balancing

scenario. A 4TB data set collected from a radio monitoring

center is also used in our experiments. This data set consists

of 100, 000 records, and each record has 13 features.

3) Measurement metrics: The effectiveness of a load

balancing mechanism is measured by the standard deviation

among the load of different bins on the hash circle(std).

Therefore, the smaller the std value is, the more effective

the load balancing mechanism is. Formally, the std can be

calculated as std =

√∑n
j=1(loadj−m

n)2

n , in which, loadj refers

to the number of balls assigned to bin j, while m and n are

the total number of balls and bins respectively.

B. Analysis

1) CloudSim based evaluation: In this set of experiments,

we deploy DLB, CH, and CHBL on a practical Cloud

environment created by CloudSim [22], and compare their

effectiveness to balance the workloads among a number of

servers. In the simulated Cloud environment, 64 machines

are hosted within a single data center. Each machine has 4

threads, 1 GB memory, 10 GB of storage, and 1Gbps network

bandwidth. On the client side, 8192 workloads(cloudlets)

with different distributions are created. The distribution is

based on the ID of each workload, which is also the key

used for mapping. Each server can run at most 4 workloads

simultaneously. When wait list of a server is full and an

additional workload is assigned, this workload needs to be

loaded by the next spare server in the hash circle. All the

workloads are submitted to the data center in one batch, and

each workload takes 20 seconds CPU time to finish.

Fig 3 shows the actual finishing time of each workload when

different load balancing mechanisms are used. The x-axis

represents the ID of each workload while the y-axis shows the

actual finishing time. It can be observed that, no matter what

the workload distribution is, the heights of lines in figures

corresponding to DLB is much lower and smoother. This

means that, when DLB is used, workloads can finish in a

shorter and more balanced time. While in CH and CHBL

cases, some workloads takes much longer time to finish than

the other ones. This is due to the imbalanced assignment of

workloads, which causes some servers to become the hotspots.

Therefore, it takes much longer for workloads on these servers

652

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on June 23,2024 at 03:14:30 UTC from IEEE Xplore. Restrictions apply.

�
�

���
���

�
	

�
���

�
�

���
��

�
��

���

�
�

���
�

�
�

�
�

��
���

�
�

�����
���

�
	

�
���

�
�

�����
��

�
��

���

�
�

�����
�

�
�

�
�

��
���

�

��

�

�

�

�

�

�

�

�

	
�

��
�

�
�

��
��

�
�

��
��

�
�

��
��

�
��

�
�

�
�

�!
"

#
$

(a) Log-normal

�
�

���
��

�
��

	
�
�

�
�

���

�
�

�

��
	
�

�

�
�

�����
���

�
�

���
	
�

�

�
�

�����
��

�
��

	
�
�

�
�

�����

�
�

�

��
	
�

�
�

��

�

�

�

�

�

�

�

�

	

��

�
�

�
��

��
�

�
��

��
�

�
��

��
�

��
�

�
�

�
�!

"
#

$
�

(b) Normal

�
�

���
���

�
	

�
���

�
�

���
��

�
��

���

�
�

���
�

�
�

�
�

��
���

�
�

�����
���

�
	

��
���

�
�

�����
��

�
��

���

�
�

�����
�

�
�

�
�

��
���

�

��

�

�

�

�

�

��

�
��

�
�

�
��

��
�

�
��

��
�

�
��

��
�

��
�

�
�

�
�!

"
#

$

(c) Uniform

�
�

���
���

�
	

�
���

�
�

���
��

�
��

���

�
�

���
�

�
�

�
�

��
���

�
�

�����
���

�
	

�
���

�
�

�����
��

�
��

���

�
�

�����
�

�
�

�
�

��
���

�

��

�

�

�

�

�

�

�
��

�
�

�
��

��
�

�
��

��
�

�
��

��
�

��
�

�
�

�
�!

"
#

$

(d) Radio monitoring data

Fig. 4: Standard deviation of bin load using different load

balancing mechanisms and distributions of input data sets

to finish. Considering the exact running time of the longest

job (i.e., max job duration) in each scenario, DLB is able to

reduce such time by 61.3% over CH and 52% over CHBL

under log-normal distribution, 33% over both CH and CHBL

under normal distribution, 60.7% and 53.68% when compared

with CH and CHBL respectively under uniformed distribution.

2) Load Balancing: Figure 4 compares the std of DLB

with CH and CHBL based methods. The std is used to

reflect how much an actual distribution of the balls on the

hash circle deviates from an idea uniform distribution. For

each experiment, we collect the average result as well as the

distribution of 10 runs and plot them in Figure 4. It can be

observed that compared with other methods, DLB has the

lowest value of std regardless of the data distributions. For

example, when the real-world data set is used, average std
value of DLB for the 10 runs is 78, while that of other

methods, such as CH(wiht Python Hash) and CH(with BKDR

Hash) are 337 and 299 respectively, which are 3.32x and 2.83x

larger than that of DLB.

V. CONCLUSIONS

Existing hash function based load balancing mechanisms

cannot perform well when the input data is skewed. In

this paper, we proposed DLB, a Deep Learning based load

Balancing mechanism, to address this problem. DLB replaces

the hash functions in traditional load balancing mechanisms

with deep learning models. Given the constant time of

model inferencing, using a learned model does not introduce

additional runtime overhead compared with using a hash

function. We implemented DLB and deployed it on a practical

Cloud environment using CloudSim. Experimental results

show that, compared to traditional hash function based load

balancing mechanisms, DLB is able to achieve more balanced

and stable results even when the input data is skewed.

REFERENCES

[1] EC Amazon. Amazon web services. Available in: http://aws. amazon.
com/es/ec2/(November 2012), page 39, 2015.

[2] Ibm cloud. https://www.ibm.com/cloud,
[3] Google cloud. https://cloud.google.com/.
[4] Microsoft azure. https://azure.microsoft.com/en-us/.
[5] Bin Jiang and Tao Jia. Exploring human mobility patterns based on

location information of us flights. arXiv preprint arXiv:1104.4578, 2011.
[6] Filippo Radicchi. Human activity in the web. Physical Review E,

80(2):026118, 2009.
[7] Elaheh Gavagsaz, Ali Rezaee, and Hamid Haj Seyyed Javadi. Load

balancing in join algorithms for skewed data in mapreduce systems.
The Journal of Supercomputing, 75(1):228–254, 2019.

[8] Joanna Berlinska and Maciej Drozdowski. Comparing load-balancing
algorithms for mapreduce under zipfian data skews. Parallel Computing,
72:14–28, 2018.

[9] ThomasH.Cormen. . . [etal. Introduction to algorithms. 2002.
[10] Shoichi Hirose and et al.
[11] Michael Coles and Rodney Landrum. Asymmetric Encryption. 2009.
[12] Arash Partow. Bkdr hash in ”the general hash functions library”, 2020.
[13] Austin Appleby. Murmurhash3 on github”, 2020.
[14] Google Inc. The python standard library, 2020.
[15] Dirk Brockmann, Lars Hufnagel, and Theo Geisel. The scaling laws of

human travel. Nature, 439(7075):462, 2006.
[16] Tim Kraska et al. The case for learned index structures. In Proceedings

of the 2018 International Conference on Management of Data, SIGMOD
Conference 2018, Houston, TX, USA, June 10-15, 2018, 2018.

[17] Wenkun Xiang and et al. Pavo: A rnn-based learned inverted index,
supervised or unsupervised? IEEE Access, 7:293–303, 2019.

[18] Tim Kraska and et al. Sagedb: A learned database system. In CIDR
2019, 9th Biennial Conference on Innovative Data Systems Research,
Asilomar, CA, USA, January 13-16, 2019, Online Proceedings, 2019.

[19] Alex Galakatos and et al. Fiting-tree: A data-aware index structure. In
Proceedings of the 2019 International Conference on Management of
Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June
30 - July 5, 2019., pages 1189–1206, 2019.

[20] David R. Karger and et al. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the world wide
web. In Proceedings of the Twenty-Ninth Annual ACM Symposium on
the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, pages
654–663, 1997.

[21] Vahab S. Mirrokni and et al. Consistent hashing with bounded loads.
In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10,
2018, pages 587–604, 2018.

[22] Rodrigo N Calheiros and et al. Cloudsim: a toolkit for modeling and
simulation of cloud computing environments and evaluation of resource
provisioning algorithms. Software: Practice and experience, 41(1), 2011.

[23] David R. Karger and Matthias Ruhl. Simple efficient load-balancing
algorithms for peer-to-peer systems. Theory Comput. Syst., 39(6).

[24] David Thaler and Chinya V. Ravishankar. Using name-based mappings
to increase hit rates. IEEE/ACM Trans. Netw., 6(1):1–14, 1998.

[25] John Lamping and Eric Veach. A fast, minimal memory, consistent hash
algorithm. CoRR, abs/1406.2294, 2014.

[26] Roberto Grossi and Luca Versari. Round-hashing for data storage:
Distributed servers and external-memory tables. In 26th Annual
European Symposium on Algorithms, ESA 2018, August 20-22, 2018,
Helsinki, Finland, pages 43:1–43:14, 2018.

[27] Wei Wang and Chinya V. Ravishankar. Hash-based virtual hierarchies
for scalable location service in mobile ad-hoc networks. MONET,
14(5):625–637, 2009.

[28] Xiaoke Zhu, Taining Cheng, Qi Zhang, Ling Liu, Jing He, Shaowen Yao,
and Wei Zhou. Nn-sort: Neural network based data distribution-aware
sorting. arXiv preprint arXiv:1907.08817, 2019.

[29] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

653

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on June 23,2024 at 03:14:30 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T18:17:22-0400
	Preflight Ticket Signature

